
DRAFT

© EMERALD Consortium Contract No. GA 101120688 Page 1 of 73

Deliverable D1.3

EMERALD solution architecture-v1

Editor(s): Iñaki Etxaniz

Responsible Partner: TECNALIA Research & Innovation

Status-Version: Final-v1.0

Date: 31.10.2024

Type: R

Distribution level (SEN, PU): PU

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 73

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: D1.3 EMERALD solution architecture-v1

Due Date of Delivery to the EC 31.10.2024

Workpackage responsible for the
Deliverable:

WP1 - Concept and methodology of EMERALD

Editor(s): Iñaki Etxaniz (TECNALIA)

Contributor(s): FABA, TECNALIA, Fraunhofer, CNR, SCCH

Reviewer(s):
Christian Banse (Fraunhofer)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, WP5

Abstract: Initial version of the description and design of the
architecture of the EMERALD solution and underlying
component integration.

Keyword List: Architecture, Requirements, Sequence diagrams,
Component cards

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 73

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 14.06.2024 Table of Contents, Structure Iñaki Etxaniz
(TECNALIA)

v0.2 24.09.2024 First draft. Included requirements,
Sequence diagrams

Iñaki Etxaniz
(TECNALIA)

v0.3 01.10.2024 Completed context and architecture Iñaki Etxaniz
(TECNALIA)

v0.4 15.10.2024 Included 3.4 Analysis, Conclusions
Ready for internal review

Iñaki Etxaniz
(TECNALIA)

v0.5 24.10.2024 Internal QA Review Christian Banse
(Fraunhofer)

v0.6 25.10.2024 Addressed comments received in the
Internal QA review

Iñaki Etxaniz
(TECNALIA)

v0.7 30.10.2024 Final review Cristina Martínez
/Juncal Alonso
(TECNALIA)

v0.8 31.10.2024 Address comments received in the
final review

Iñaki Etxaniz
(TECNALIA)TECNALIA

v1.0 31.10.2024 Submitted to the European
Commission

Cristina Martínez
/Juncal Alonso
(TECNALIA)

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 73

Table of contents

Terms and Abbreviations .. 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 8

2 Overview of the EMERALD Framework ... 9

2.1 Context diagram .. 9

2.2 The EMERALD framework .. 11

2.3 Glossary.. 12

3 EMERALD Framework Requirements .. 16

3.1 Methodology and Tools for requirements elicitation ... 16

3.1.1 The process .. 16

3.1.2 The tools .. 17

3.2 Functional Requirements ... 20

3.3 Non-Functional Requirements ... 25

3.3.1 Other WP1 requirements .. 25

3.3.2 Business driven requirements ... 27

3.3.3 UI/UX requirements (usability).. 28

3.4 Analysis of Requirements .. 29

3.4.1 Mapping of requirements to KRs .. 29

3.4.2 Mapping of requirements to KPIs .. 31

3.4.3 Mapping of requirements to Business Driven Requirements 34

3.4.4 Prioritization and current status.. 36

3.5 Requirements Summary Dashboard .. 37

4 EMERALD Framework detailed view ... 40

4.1 Data model .. 40

4.2 Component description (components cards & sequence diagrams) 43

4.2.1 Evidence Collectors ... 43

4.2.2 TWS – Trustworthiness System ... 52

4.2.3 MARI - Mapping Assistant for Regulations with Intelligence 55

4.2.4 RCM - Repository of Controls and Metrics .. 57

4.2.5 Orchestrator .. 59

4.2.6 Evidence Store ... 62

4.2.7 Assessment .. 64

4.2.8 Evaluation .. 66

5 Conclusions .. 69

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 73

6 References ... 70

APPENDIX A: Current status of requirements ... 72

 List of tables

TABLE 1. ROLES IN THE EMERALD ECOSYSTEM .. 9
TABLE 2. EMERALD GLOSSARY ... 12
TABLE 3. REQUIREMENT TEMPLATE .. 17
TABLE 4. COMPONENT CARD TEMPLATE .. 19
TABLE 5. FUNCTIONAL REQUIREMENTS. ... 21
TABLE 6. BUSINESS DRIVEN REQUIREMENTS ... 27
TABLE 7. UI/UX REQUIREMENTS .. 28
TABLE 8. FUNCTIONAL REQUIREMENTS AND KRS ALIGNMENT MATRIX .. 29
TABLE 9. FUNCTIONAL REQUIREMENTS AND KPIS ALIGNMENT MATRIX. .. 32
TABLE 10. TECHNICAL REQUIREMENTS VS BUSINESS REQUIREMENTS ALIGNMENT MATRIX........................... 34
TABLE 11. REQUIREMENTS PRIORITIZATION MATRIX .. 36
TABLE 12. SUMMARY TABLE OF REQUIREMENTS STATUS AT M12 (BY COMPONENT) 37
TABLE 13. GENERAL VIEW: COMPONENTS VS PILOT... 39
TABLE 14. STATUS OF THE TECHNICAL REQUIREMENTS ... 72

List of figures

FIGURE 1. EMERALD CONTEXT DIAGRAM ... 10
FIGURE 2. OVERVIEW OF THE EMERALD COMPONENTS.. 11
FIGURE 3. LIST OF REQUIREMENTS AS ISSUES IN GITLAB (EXCERPT) ... 19
FIGURE 4. NUMBER OF REQUIREMENTS PER COMPONENT .. 38
FIGURE 5. REQUIREMENT STATUS ... 38
FIGURE 6. REQUIREMENT STATUS PER COMPONENT .. 39
FIGURE 7. EMERALD DATA MODEL (D1.1 [1]).. 41
FIGURE 7. EMERALD DATA DIAGRAM .. 41
FIGURE 9. AI-SEC SEQUENCE DIAGRAM .. 44
FIGURE 10. AMOE SEQUENCE DIAGRAM .. 46
FIGURE 11. CLOUDITOR-DISCOVERY SEQUENCE DIAGRAM .. 48
FIGURE 12. CODYZE SEQUENCE DIAGRAM .. 49
FIGURE 13. OVERVIEW OF EKNOWS PLATFORM COMPONENTS .. 50
FIGURE 14. EKNOWS SEQUENCE DIAGRAM ... 52
FIGURE 15. TWS SYSTEM RECORDING SEQUENCE DIAGRAM ... 54
FIGURE 16. TWS SYSTEM VERIFICATION SEQUENCE DIAGRAM .. 55
FIGURE 17. MARI SEQUENCE DIAGRAM .. 57
FIGURE 18. RCM SEQUENCE DIAGRAM ... 59
FIGURE 19. ORCHESTRATOR SEQUENCE DIAGRAM ... 62
FIGURE 20. EVIDENCE STORE SEQUENCE DIAGRAM .. 64
FIGURE 21. ASSESSMENT SEQUENCE DIAGRAM ... 66
FIGURE 22. EVALUATION SEQUENCE DIAGRAM ... 68

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 73

Terms and Abbreviations

AI Artificial Intelligence

AI-SEC AI Security Evidence Collector

AIC4 AI Cloud Service Compliance Criteria Catalogue

AMOE Assessment and Management of Organizational Evidence

API Application Programming Interface

BDR Business-Driven Requirement

CaaS Certification-as-a-Service

CI/CD Continuous Integration / Continuous Delivery

CKM Cryptography and Key Management

CLI Command Line Interface

CSA or EU CSA EU Cybersecurity Act

CSP Cloud Service Provider

CSV Comma-Separated Values

CPU Central Processing Unit

DoA Description of the Action

EBSI European Blockchain Services Infrastructure

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

gRPC Google Remote Procedure Call

HTTP Hypertext Transfer Protocol

ICT Information Communications Technology

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JPA Java Persistence API

KPI Key Performance Indicator

KR Key Result

MARI Mapping Assistant for Regulations with Intelligence

ML Machine Learning

MS MileStone

MVC Model, View, Controller

NFR Non-Functional Requirement

NLP Natural Language Processing

OSCAL Open Security Controls Assessment Language

OSS Open-Source Software

Protobuf Protocol Buffers

RBAC Role-Based Access Control

RCM Repository of Controls and Metrics

REST Representational State Transfer

SARIF Static Analysis Results Interchange Format

SDLC Software Development Life Cycle

SSI Self-Sovereign Identity System

TWS Trustworthiness System

UI/UX User Interface / User Experience

UML Unified Modelling Language

VM Virtual Machine

UI/UX User Interface/ User eXperience

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 73

Executive Summary

This deliverable proposes an architecture for the EMERALD framework. It is produced in the
context of WP1-Concept and methodology of EMERALD, more concretely in Task 1.2 EMERALD
architecture. It provides a general view of the EMERALD framework, which complements the
Data Model presented some months before in D1.1 [1]. This document contributes to these
outcomes of the work package:

• The architecture of the overall EMERALD software suite and the related structural and
behavioural models, as well as data modelling and interaction mechanisms definition.

• The integration of WP2, WP3 and WP4 outcomes in the EMERALD audit suite.

• The methods to support the integration of pilots in WP5.

This document is divided in three main parts. The first part presents an overview of the EMERALD
framework. A context diagram has been included, showing the main inputs, outputs, and roles
involved in the EMERALD workflow. Twelve different components of EMERALD are presented,
as well as and the interaction among them. A Glossary of terms closes this part, where the
definition of terms helps to understand the EMERALD context.

The second part of the document presents the requirements elicited for the EMERALD
framework. The requirements elicitation is an iterative process, mixing several perspectives,
where Technical requirements (functional and non-functional), User Interface requirements and
Pilot requirements are gathered independently. Afterwards, they are linked, integrated and
analysed. We present the tools used to implement the process: GitLab Issues as the requirement
definition and tracking tool; Component Cards template to describe components and PlantUML
to the create the UML diagrams.

Then, we describe the technical requirements elicited in the first 12 months of the project,
grouped by components. They cover the expected functionalities of EMERALD framework.
These are complemented by non-functional requirements, that cover a range of properties like
performance, security, deployment, or availability, to cite some. These are system constrains
which are transversal to many (or all) components. The pilot requirements, worked in WP5, are
listed too, and then a mapping with the technical requirements has been presented.

Next, an analysis of the requirements set has been performed, studying their relations, status,
and coverage. For that, a set of traceability matrices shows the alignment of the elicited
requirements with respect to the EMERALD Key Results, and which technical requirements
implement a pilot requirement. To end, a prioritization matrix reflects which requirements will
be implemented in each iteration of the EMERALD workplan.

The last part of the document presents the EMERALD Framework detailed view, where each
component is described in detail -functionality, interfaces, and behavioural model- using the
previously mentioned artifacts. The general data model is also included.

Future version of this document is D1.4 [2], due at M24. It will provide and actualized set of
requirements and their status, as design development tasks evolve. The next related task is the
integration of the v1 version of the components into the first version of the integrated EMERALD
framework, which will be produced in M18 of the project and reported in D1.7 [3].

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 73

1 Introduction

1.1 About this deliverable

This deliverable is the result of Task 1.2 – EMERALD architecture, in the WP1-Concept and
methodology of EMERALD. Its main goal is to provide a common definition of the EMERALD
Framework.

The document includes an overview first, and a detailed description later of the EMERALD
architecture. It describes the different components, modules, interactions and interfaces. A
concise view of each component is presented, using a template named "Component Card",
which contains key information about the component, such as: functionality, interfaces, sub-
parts, and license. The component behaviour description is completed by UML sequence
diagrams1, that show the interaction with the rest of components.

The document provides a complete list of the technical requirements of the EMERALD CaaS
framework. Part of them have been gathered and developed in cooperation with WP5 - that
deals with the pilots’ implementation - and WP4 - which oversees the user experience and
interaction in the EMERALD framework. Most of the requirements listed here have been already
described in more detail in the deliverables of WP2 and WP3 (dedicated to describing the
components in depth), WP4 (related to the UI) and WP5 (related to the pilots). An analysis of
the requirements, their prioritization and status are also included.

During the first year of the project, several workshops have been conducted among the work
packages to coordinate the different views that stakeholders could have about what the
EMERALD framework has to provide and how. One of the outcomes are the requirements
gathered here.

1.2 Document structure

The remainder of the document is organized as follows:

Section 2 presents a global view of the EMERALD framework, its users and context. The section
also includes a Glossary that captures the main terminology used in the project.

Section 3 outlines the methodology and tools used in requirement management and
documentation. The functional and non-functional requirements of the EMERALD Framework
are presented, along with their priority and current status of implementation. A dashboard
finalizes the section.

Section 4 describes the architecture of the EMERALD CaaS framework. It provides a succinct
description of the components that make up the EMERALD framework, their workflows,
implemented interfaces, and sequence diagrams.

Section 5 presents the conclusions, a summary of findings and outcomes.

Finally, APPENDIX A: Current status of requirements contains the list of Technical requirements
and their current fulfilment status.

1 https://en.wikipedia.org/wiki/Sequence_diagram

https://en.wikipedia.org/wiki/Sequence_diagram

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 73

2 Overview of the EMERALD Framework

This section contains the context diagram of EMERALD and the involved roles, introduces the
framework, and provides a Glossary of the most relevant terms used in EMERALD.

2.1 Context diagram

The context diagram of a system shows the roles involved, the basic workflow, as well as the
inputs and outputs of the process.

The roles that take part in the EMERALD ecosystem, as well as personas and scenarios, are being
investigated in the workshops related to tasks T4.1 – Requirements engineering with compliance
managers and auditors and T4.2 – Modelling work processes, in WP4. Table 1 summarizes the
main roles in EMERALD. For more information on this subject, consult the deliverables D4.1 [4]
and D4.3 [5].

Table 1. Roles in THE EMERALD ecosystem

Generic Role Roles Description

Compliance
Stakeholders

Compliance Manager

Supports the company in being trustworthy, overseeing
audit processes, being up to date with security standards,
organizing audits and managing the scheduling of different
compliance schemes.

Creates an audit scope in EMERALD to manage the
certification process.

Compliance Manager for
financial services

Focuses on risk management of third-party cloud services,
assesses controls based on risk and regulation, manages
contractual agreements, and monitors compliance

Metric Owner

Their tasks consist of on defining metrics, collecting
evidence for controls and assigning and delegating control
implementation to Technical Implementers.

NOTE: alternatively called Internal Control Owner

Auditor
Stakeholders

Internal Auditor
Reviews all controls of an audit scope. If some are non-
compliant, checks the reasons and informs the Compliance
Manager.

External Lead Auditor In charge of managing the audit process, planning,
reporting, and maintaining contact with customers.

NOTE: both Auditors are a unique role in the EMERALD UI. External Technical Auditor

Technical
Stakeholder

Technical Implementer

Performs the technical tasks to implement an assigned
control, through software development, configuration,
etc.

Selects a set of metrics that matches the controls,
implements them, and informs the Metric Owner.

NOTE: alternatively called Metric Implementor

A first categorization divides the roles in three groups according to their function: (i) the
Compliance Stakeholders (Compliance Managers and Metric Owner) that manage the
certification process, organizing audits and preparing the system; (ii) the Auditor Stakeholders
(Internal and External Auditors), that deal with the results of the assessment of an Audit Scope
and report the result to the Compliance Manager; (iii) the Technical Stakeholder, who
implements the required metrics for the Control owner.

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 73

A second categorization can be established among roles that are external to the company being
certificated (External Auditors) and the roles internal to the company (the rest of them). The
technical implementer is a special case. In fact, they are EMERALD developers, regardless of
whether they are internal or external to the company.

Figure 1 depicts a context diagram of the EMERALD framework. It shows the roles involved in
the certification workflow, as well as the inputs and outputs of the process.

Figure 1. EMERALD context diagram

The main input is the Security Schema, which is used by the Compliance Manager to define an
Audit Scope. Other inputs are the Evidence, that are gathered by the EMERALD evidence
extractors from the Cloud Service Provider, more specifically from the cloud services, the
documentation and the software artifacts that the CSP provides (we also call this Certification
Target).

The Control/Metric Owner assigns the implementation of needed metrics to the Metric
Implementer. These Metrics will be part of the extractors implementation, and will contribute
to provide Evidence and, subsequently, Assessment Results. These are the base for the Internal
Auditor to produce a Non-compliance Report, and for the External Auditor to decide about the
Certification granting.

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 73

The main output of the process is the mentioned Certificate, that ensures the compliance of the
audited services with the Security Schema. The certification is actually produced by a
Certification Body, on whose behalf the External Auditor works.

2.2 The EMERALD framework

Figure 2 shows a view of the principal EMERALD components and the general data flow between
them, as defined in D1.1 [1]. The lines indicate connections between the components, with the
arrows indicating the direction of the information flow. The components are coloured according
to the respective work package they are related to. The colour also classifies the component
regarding it function in the framework (which is also associated with the work package where
the component is developed).

There are two types of lines in the diagram. Both indicate flow of data among two components,
but in a different mode:

• dashed line (- ->): when a component calls and pulls data from the other component
using his API.

• full line (→): when a component actively pushes data to another component using its
API.

Figure 2. Overview of the EMERALD Components

From bottom to top, the diagram shows the different components of EMERALD framework.

Evidence collectors (in orange) collect different forms of data and extract evidence that are then

shared in the EMERALD framework:

• AI-SEC is an evidence collection tool that extracts various security and robustness
information from AI models.

• AMOE – Assessment and Management of Organisational Evidence – extracts evidence
from policy PDF documents. The component stores the uploaded files, as well as
relevant metadata related to the document and metrics.

• Clouditor-Discovery is an evidence gathering tool which extracts Cloud configurations
for different Cloud resources (e.g., Virtual Machines, Storage, Networks) from different
Cloud providers via API calls.

• Codyze is a static source code analysis tool which analyses source code of applications
comprising Cloud services and assesses security-relevant implementation details
according to specified security requirements.

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 73

• eknows is a tool that extracts evidence from source code files collected from the Cloud
Service environment, using multi-language reverse engineering.

Evidence assessment and certification components (in green) are the next step in the EMERALD

workflow:

• The Evidence Store functions as a centralized repository for storing evidence from the
evidence collector components during the certification process. It utilizes a graph-based
database to organize and manage evidence in an efficient and accessible manner.

• The Assessment component is responsible for assessing the evidence and providing the
Orchestrator with assessment results. It calculates the assessment results using the
metrics provided by the Repository of Controls and Metrics (RCM).

• The Orchestrator’s main purpose is to hold all dynamic information about the current
audit process, such as the Certification Target, Assessment Results and the Certificate
state. It includes the certification graph, providing a snapshot of the cloud service's
state.

• The Evaluation component is responsible for combining assessment results of individual
metrics relevant to a specific control of a certification scheme to create an evaluation
result for this control.

• The Repository of Controls and Metrics (RCM) component serves as a smart catalogue
of controls and metrics. The repository can contain different schemes, with the
corresponding categorization. It also provides import/export mechanisms to facilitate
the reuse and composition of catalogue elements.

• The Mapping Assistant for Regulations with Intelligence (MARI) component is an
intelligent system using AI techniques and NLP processing to select suitable metrics for
demonstrating compliance with certification schemes. It can also associate security
controls of two different certification schemes.

• The Trustworthiness System (TWS) component ensures that all actions and data within
the certification process are tamper-proof and verifiable. It securely stores the
information and associated metadata of evidence and assessment results on a general-
purpose Blockchain network.

Finally, the EmeraldUI (in blue) is the User Interface that wraps all the components functionality

in a unique User Interface. It leverages the APIs provided by the components to interchange the
needed commands and information and present it in a suitable manner to the final users. It
offers the required functionality for the business cases to the different roles that make use of
EMERALD.

2.3 Glossary

Table 2 provides a definition of the terms used in the context of EMERALD, along with examples.
The definitions could be improved in the course of the project and new terms added, if needed.
Therefore, these definitions will be collected in a separate document within the scope of Task
1.2 Architecture, open for all partners to contribute and consult.

Table 2. EMERALD Glossary

Term Definition

Assurance
Level

Ground for confidence that an ICT process, product, or service meets the security
requirements of the European Cybersecurity Certification Scheme (EUCS) and states
at what level it has been evaluated. The EU Cybersecurity Act defines the following
assurance levels:

• Basic

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 73

Term Definition

• Substantial

• High

Source: EU Cybersecurity Act [6]

Audit Scope The audit scope refers to the scope of an individual audit. It includes the certification
target (i.e., a sub-selection of resources) set into context of a particular certification
scheme.

Evidence

Existence or verity of something. Can be obtained through observation,
measurement, test, or by other means. Evidence for the purpose of an audit generally
consists of records, statements of fact or other information which are relevant to the
audit criteria and verifiable.

 Examples:

• Terraform template for VM being assessed.

• Audit logs from S3 bucket.

• Documented security policy and procedures of a CSP.

 Source: ISO 9000 [7]

Certification
Target

The target of certification comprises all entities in the cloud service that are
potentially relevant for a certification. This includes (cloud) infrastructure
components, the source code or binary code of deployed services, documents
detailing processes as well as specific data, for example AI models.

Cloud Service One or more capabilities offered via cloud computing invoked using a defined
interface.

Source: ISO/IEC 17788 [8]

Cloud Service
Provider (CSP)

Company which makes cloud services available.

Source: ISO/IEC 17788 [8]

Component Any part of the EMERALD ecosystem than has a specific functionality and can be
considered a separate entity with respect to other components. It is usually
represented by a box in the EMERALD components diagram.

Resource Component of the Cloud Service, which offers a specific capability to the cloud
customer.

Examples: Virtual Machines, Kubernetes clusters, Databases.

Source: Leverages ISO 17788 [8]

Security
Assessment
Result

The outcome of a performed Security Assessment Rule

 Example: Compliant, Non-compliant

Security
Assessment
Rule

The process that applies a specific Metric to assess if the Cloud Service’s configuration
is compliant with a specific Target Value. The Security Assessment Rule compares a
Measurement Result with the specific Target Value to obtain a Security Assessment
Result.

The security assessment rule is instantiated from a template which references the
Metric to apply, but not the specific Target Value to use for the assessment of the
Security Configuration.

Examples:

• Check the configured TLS Version of an Application Service is at least 1.2

Check the maximum password age on a cloud Linux VM is set to 30 days.

Security
Evaluation
Result

The result of consolidating all the Assessment Results of a given Audit Scope. The
result is a yes/no, that is, the acceptation or the rejection of the certification in
course according to the established rules.

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 73

Term Definition

Security
Control

A safeguard or countermeasure prescribed for an information system or an
organization, designed to protect the confidentiality, integrity, and availability of its
information and to meet a set of defined security requirements (cf. Technical and
Organizational Measures).

Source: Security and Privacy Controls for Federal Information Systems and
Organizations - NIST Special Publication 800-53. rev 5 [9]

Each Security Control has an Objective, that is, a statement describing what it is to be
achieved as a result of implementing a control.

Example: (CKM-01 POLICIES FOR THE USE OF ENCRYPTION MECHANISMS AND KEY
MANAGEMENT) Objective: Policies and procedures for encryption mechanisms and
key management including technical and organisational safeguards are defined,
communicated, and implemented, in order to ensure the confidentiality, authenticity
and integrity of the information.

Source: ISO/IEC 27000:2018 - Information technology -- Security techniques --
Information security management systems -- Overview and vocabulary [10]

Controls exist mostly in natural language within various security frameworks and
standards like the EUCS. In EMERALD, a control refers to a specific countermeasure
designed to protect cloud services. We follow the definition used in OSCAL2:

“A control is a requirement or guideline, which when implemented will reduce an
aspect of risk related to an information system and its information”.

Note that the naming of a control also differs from security standard to security
standard, e.g., in the EUCS there are controls and requirements, where a control
provides a more abstract description and puts multiple requirements together, while
a requirement gives a concrete definition of a countermeasure. A metric, on the other
hand, refers to a rule (in fact, a measurable value) used to assess one or more
properties of a control.

Source: NIST, Key Concepts and Terms Used in OSCAL [11]

Security
Measurement
Result

The outcome of measuring a Metric.

Examples:

• TLS Version = 1.0,

• Maximum Password Age = 20 days,

• Password Length = 6 characters,

Encryption at rest = Enabled

Security
Metric

A standard of measurement that describes the conditions and the rules for
performing a measurement of a property and for understanding the results of a
measurement.

Note: The metric describes what the result of the measurement means, but not how
the measurement is performed.

Note: A metric is applied in practice within a given context that requires specific
properties to be measured, at a given time(s) for a specific objective.

Examples: TLS Version, Maximum Password Age, Password Length, Retention Time

Source: NIST SP500-307 [12]

Tamper proof Feature of the Digital Audit Trail system (DAT) guaranteeing information cannot be
modified (i.e., it is impossible to be changed).

Target Value

A property of a Security Assessment Rule, defining the value for a specific Metric so
the Security Configuration of the Cloud Service is compliant with the Security
Requirement. The target value is defined by the CSP.

2 https://pages.nist.gov/OSCAL/resources/concepts/terminology/#control

https://pages.nist.gov/OSCAL/resources/concepts/terminology/#control

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 73

Term Definition

Example: Max Password Age <= 90 days, TLS Version In Use >= 1.2, Encryption Key
Length >= 1024 bits, Retention Time > 35 days

Tool A software element that has several disparate functions and therefore can be
composed by several components. It can be seen as an aggregation of components.

Example: Clouditor is a tool, and it can be composed by several components, like
Orchestrator, Evidence Store, Evaluation, Assessment…

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 73

3 EMERALD Framework Requirements

In this chapter, we will list and jointly analyse the requirements gathered for the components
during the first year of the project. During this time, several workshops have been maintained
among the work packages to coordinate the different views that stakeholders could have about
what the EMERALD framework must provide and how. One of the outcomes are the
requirements presented here.

Each requirement is uniquely identified by an ID, which will be referenced in future tasks and
documents for prioritization, validation, etc. Please note that the requirements are not
described in detail, i.e., using the template defined in Table 3, because they have already been
described in detail in those deliverables describing the respective EMERALD component in WP2
(see D2.2 [13], D2.4 [14], D2.6 [15], D2.8 [16]), WP3 (see D3.1 [17]), WP4 (see D4.1 [4]) and WP5
(see D5.1 [18]).

3.1 Methodology and Tools for requirements elicitation

In this section, we will briefly describe the methodology used in EMERALD for the elicitation of
requirements and the principal tools and artifacts used to support the process.

3.1.1 The process

The requirements gathering process followed in EMERALD is multi-focused. The process has
been divided in three parallel paths, each one trying to investigate the EMERALD system from
different perspectives.

A first path that uncovers the functionalities and qualities that the technicians understand the
EMERALD product has to offer. This work has been based in the documentation available:
project proposal [19], key Results expected, norms and standards, and in the knowledge
inherited from the MEDINA3 project, which is the predecessor of EMERALD project. This path,
carried under WP1, has produced a set of Technical requirements. These requirements have
been covered in different deliverables in WP2 (D2.2 [13], D2.4 [14], D2.6 [15], D2.8 [16]) and
WP3 (D3.1 [17]) devoted to describing the components.

A second path has been devoted specifically to the user experience, to provide EMERALD with
an advanced user interface that connects the rest of components and satisfies the users’
requirements while providing the needed information in its different views. This work has been
conducted in WP4, where a co-design, participatory design approach has been followed, holding
separate interviews with component owners and with pilot owners. This has produced a set of
User Interface requirements (more information on this is available in D4.1 [4]).

Lastly, a third path has been focused on what the final users of EMERALD have asked to be part
of the delivered product. This work has been part of WP5, where the pilots have been defined,
and has produced a set of Business requirements (more information on this is available in the
deliverable D5.1 [18]).

All these separate elicitations have produced separate requirement sets. One of the tasks in
WP1 has been to analyse, refine and check these requirements, approve the correct ones and
discard others, as well as to establish the relationships among them. Several discussions about
the requirements have hold during the periodic work package meetings. Also, specific
workshops have been conducted to map the business requirements and user interface

3 https://medina-project.eu/

https://medina-project.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 73

requirements to technical requirements. This has produced changes in the requirements, and
new requirements have been defined when necessary.

This document presents the results of this analysis, managing the different lists of requirements.
We provide a dashboard with the status and prioritization of requirements. Furthermore,
several traceability matrixes are presented, to keep all the relationships affecting the
requirements up to date.

3.1.2 The tools

To carry out the architecture definition, different tools and artifacts have been used, namely
Gitlab issues, Component cards and UML models with PlantUML tool, that will be briefly
described in the following.

3.1.2.1 Gitlab issues

To better control their changes and evolution, the requirements in EMERALD have been defined
in GitLab, using the issues4 feature. Issues are used in general to collaborate on ideas, solve
problems, and plan work. They allow to track tasks and work status, accept feature proposals,
ask questions, or support requests.

A template has been used to define the requirements, as depicted in Table 3. The template has
a tabular form and contains all the fields needed to gather the requirement information and
track it during the project lifetime. The table has been also implemented as a GitLab template,
useful to define new requirements.

Table 3. Requirement template

Field Description

Requirement ID Unique identifier. E.g., for the Repository of Controls and Metrics ->
RCM.01, RCM.02…

Short title Short description of the requirement

Description More detailed description of the requirement. This is especially relevant for
the creation of the test cases.

Status Choose the corresponding label:

Status::Proposed -> Status::Accepted / Status::Discarded -> Status::Work in
Progress -> Status::Implemented -> Status::Validated

Priority Choose the corresponding label:

Priority::Must -> Priority::Should -> Priority::Could

Component Choose the corresponding label:

Comp::AI-SEC, Comp::AMOE, Comp::CertGraph, Comp::Clouditor,
Comp::Codyze, Comp::eKnows, Comp::EmeraldUI, Comp::EvidenceStore,
Comp::LCM, Comp::RCM, Comp::RMA, Comp::TWS, Comp::WP1,
Comp::N/A

Source Pilots / Component / DoA / KPI

Type Choose the corresponding label:

Choose the corresponding label:

Type::Technical, Type::Pilots, Type::GUI

4 https://docs.gitlab.com/ee/user/project/issues/

https://docs.gitlab.com/ee/user/project/issues/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 73

Related KR Choose the corresponding label:

 KR::KR1_EXTRACT, …, KR::N/A

Related KPI Choose the corresponding label:

 KPI::1.1, …, KPI::N/A

Validation
acceptance criteria

Describe how to validate the requirement. What are the steps to follow,
what should be the system output

Progress [Optional] percentual degree of advances from 0% to 100%

Milestone Select the milestone among the defined ones: from MS1: Components V1
(M12) to MS9: Final evaluation report and impact analysis (M36)

As mentioned above, this table has been used in other WP2 and WP3 deliverables dedicated to
describing the components in detail. In this document, we will mainly limit to listing the
requirements and analysing them as a whole.

Figure 3 shows a list of the requirements in the GitLab requirements repository. The developer
can define a new requirement using the aforementioned template. To facilitate requirements
identification and filtering, a set of labels associated to the issues have been defined. Labels are
organized in categories, where each category defines a property of the requirement and is
represented in different colours. Categories for labels are:

• Component label (one for each component)

• Type label (Technical / Pilots, UX)

• Priority label (Must / Should / Could)

• KR label (one for each Key Result)

• Pilot label (Ionos / CloudFerro / Fabasoft / Caixabank)

• Status label (Proposed / Accepted / Discarded / Implemented / Validated)

• KPI label (one for each Key Performance Indicator)

Requirements can be filtered using lists or also be visualized and managed using issue boards5
of GitLab. The issue board is a software management tool used to plan, organize, and visualize
a workflow for a feature or product release, pairing issue tracking and project management. The
boards organize the issues in cards, in vertical lists organized by their labels, milestones, or
assignees. Requirements can be managed inside the boards. For example, moving a requirement
from one list to other changes the associated label and thus the requirement properties. Several
specific boards have been defined in EMERALD to provide different views of the requirement
set:

• Requirements by TYPE(Technical/GUI/Pilots)

• Requirements by PRIORITY(Must/Should/Could)

• Requirements by KR

• Requirements by STATUS

• Requirements by COMPONENT

• Requirements by Pilot

5 https://docs.gitlab.com/ee/user/project/issue_board.html

https://docs.gitlab.com/ee/user/project/issue_board.html

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 73

Figure 3. List of requirements as issues in GitLab (excerpt)

3.1.2.2 Component cards

A “component card” is what we call a piece of information that contains a brief description of
each component. It contains the essential information to know what the component does,
where it fits in the framework, with which other components it interacts and how it is made.

A component card has been defined for each component, and all of them are included as part
of the detailed view of the EMERALD framework in Section 4. Table 4 shows the structure of a
component card.

Table 4. Component card template

Component
Name

Name of the component and acronym, if any

Main
functionalities

List the main functionalities the component provides. E.g.:

• Describe functionality 1

• Describe functionality 2

Sub-
components
Description

Subcomponent A: Describe the functionality of the sub-component

Subcomponent B:

Main logical
Interfaces
offered

Include graphical interfaces if any.

Interface name Description Interface technology

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 73

Interaction
with other
components

• Component X: Describe interaction with component X

• Component Y:

Relevant
sequence
diagram/s

Include a shot of the sequence diagram(s) describing the component’s dynamic
behaviour

Requirements
Mapping

List the requirements covered by this component. E.g.:

• TWS.01: Provide integrity proof of evidence

• TWS.02:

Technology
used

Describe the technology used in the implementation of the component
(languages, frameworks, etc)

Related KR Related EMERALD proposal Key Results

WP and task WPX – Tx.1

License License of the component

Partner Partner that is the component owner, who defines/implements it.

3.1.2.3 PlantUML diagrams

Diagrams of the Unified Modelling Language (UML) have been used in the definition of the
EMERALD architecture. More concretely, Class diagrams to define the data model the
components use, and the relationship among the objects; and Sequence diagrams, to define the
dynamic behaviour of the components and the flow of information among them. This kind of
diagram visualizes the interactions between users, systems and sub-systems over time, through
message passing between objects or roles. UML sequence diagram complete the classes or
object diagram, that represent the attributes, by representing the programming logic to be filled
in the methods’ body.

To define the UML diagrams, the PlantUML6 tool was chosen. This tool creates the diagram
based in text descriptions and supports a wide range of diagrams. PlantUML allows to render
the diagrams as images in different output formats. As the PlantUML based diagrams contain
text/code, the files are included in Gitlab for versioning. This allows for different organisational
processes, that are not possible in common online tools with graphical support. New versions of
the diagrams are produced with each commit, and merge requests are created to change the
actual release.

As the specific diagram for each component has been included in the deliverable D1.1 [1], in this
document we only present a general class diagram representing the whole EMERALD
framework. However, sequence diagrams for each component are included in Section 4 as part
of the detailed view of the EMERALD framework.

3.2 Functional Requirements

Table 5 lists the set of functional requirements of the EMERALD framework components. Along
with the brief description, the priority and milestone of each requirement are presented. A total
of 44 functional requirements have been elicited, grouped in the 12 components that form the
framework.

6 https://plantuml.com/

https://plantuml.com/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 73

The Identification of each requirement is unique. It is composed by the acronym of the
component plus a number. The components have been described in Section 2.2, but a list with
its correspondence to Identifiers is provided below for clarity.

• AI-SEC: AI Security Evidence Collector

• AMOE: Assessment and Management of Organisational Evidence

• CLDISC: Clouditor-Discovery

• CODYZE: Codyze

• EKNOWS: eknows - Software analysis platform

• TWS: Trustworthiness System

• MARI: Mapping Assistant for Regulations with Intelligence

• RCM: Repository of Controls and Metrics

• ORCH: Clouditor-Orchestrator

• ESTORE: Clouditor-Evidence Store

• ASSESS: Clouditor-Assessment

• EVAL: Clouditor-Evaluation

The Milestone field of each requirements signals when the requirement is foreseen to be
completed. The list of Milestones corresponds to the ones defined in the DoA:

• MS1: Project baselines and definition (M9)

• MS2: Components V1 (M12)

• MS3: Integrated audit suite V1 (M18)

• MS4: Pilots V1 (M20)

• MS5: Components V2 (M24)

• MS6: Integrated audit suite V2 (M30)

• MS7: Pilots V2 (M32)

• MS8: Integrated audit suite V3 (M34)

• MS9: Final evaluation report and impact analysis (M36)

Table 5. Functional requirements.

Req. ID Description Priority Milestone

AI-SEC.01 The extractor tool includes defined criteria: The designed AI-
SEC has the selected criteria of the BSI AIC4

Must MS2
(M12)

AMOE.01 Upload PDF document: The component shall be able to
receive a PDF document via API and process its contents
regarding the defined metrics. The PDF shall receive a unique
ID so that it can be retrieved and deleted later on.

Must MS2
(M12)

AMOE.02 Provision of extracted evidence to EvidenceStore: The
evidence extraction component needs to be able to forward
the extracted evidence to the EMERALD EvidenceStore, so it
can be used for assessment and further audit processes.

Must MS5
(M24)

AMOE.03 Refine evidence extraction approach:
The evidence extraction approach should be refined to the
needs of the pilots, so that the tool is able to provide relevant
evidence for the metric assessments.

Must MS5
(M24)

AMOE.04 Compare results from multiple documents: Results from
multiple policy documents shall be comparable using AMOE. A
metric can be used to extract evidence from different policy
documents. AMOE shall provide the results via API for a metric
and given cloud service.

Should MS2
(M12)

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 73

Req. ID Description Priority Milestone

AMOE.05 Select metrics per document: AMOE should offer the
possibility to select some metrics before they are extracted for
a document. This speeds up the processing time as metrics that
are not contained in the document do not need to be checked.
Also, it should be more convenient for the user, as the results
are more precise and less irrelevant results need to be
discarded.

Should MS5
(M24)

AMOE.06 Classify document, select respective metrics (optional):
AMOE could use document classification to pre-select some
metrics based on the category, text, requirements or other
feature that would be of use. This could potentially, reduce the
manual workload and help to provide only results for metrics
that target the specific document.

Must

MS8
(M34)

AMOE.07 Metric states: AMOE could add some internal states to the
metrics. This should help to visualize the current process for
every metric and role. Here is a list of metric flags that could
be used: new, internal-started, ready-for-audit, revise-policy,
audit-finished, result-outdated, extraction-failed.
- new: the metric has been successfully extracted
- extraction-failed: evidence could not be extracted
- internal-started: internal auditor/compliance manager

started inspecting the metric
- ready-for-audit: internal auditor/compliance manager has

finished with the metric, and marked it ready for auditor
- revise-policy: auditor sets metric to be revised
- audit-finished: auditor is ok with metric
- result-outdated: automatic or manual triggered check if

result is outdated

Should MS5
(M24)

CLDISC.01 Discovery of security properties of infrastructure
components: The Clouditor discovery needs to discover
security properties of infrastructure components. The
evidence with the security properties is sent to the Evidence
Store in the ontology format.

Must

MS6 (M30)

CODYZE.01 Extraction of security features from source code: Codyze
needs to check available source code artefacts for security
features.

Must

MS6 (M30)

EKNOWS.01 Integration into existing systems: The component should be
integrable into existing systems, development environments
and workflows, for example by using APIs like REST by
compatibility with CI/CD-Pipelines.

Must MS3
(M18)

EKNOWS.02 Resilience while analysing erroneous code: The source code
analysed by the component could be erroneous, for example
syntactical and semantical errors could be encountered while
parsing it. Furthermore, an unknown dialect of a language
could be encountered. An appropriate error handling strategy
for such situations is necessary: Erroneous code will be skipped
and not be further analysed. A corresponding error message
will be stored in the gathered evidence.

Should MS5
(M24)

EKNOWS.03 Multi-language support: The component should be able to
analyse source code written in different programming
languages and should support at least Java and Python.

Must MS5
(M24)

EKNOWS.04 Support EMERALD evidence format: The analyzation results
are offered in a structured and standardized format, the
EMERALD evidence format (see data model). This enables
further processing and queries in other components.

Must MS3
(M18)

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 73

Req. ID Description Priority Milestone

EKNOWS.05 Static code analysis: The component uses static code analysis
methods. Such methods are, for example, data flow analysis,
call graph analysis, symbolic execution or control flow analysis.
One or multiple methods (possibly in combination) will be used
to gather evidence. The actual used method(s) depend(s) on
the metric, for which evidence should be extracted.

Must MS5
(M24)

TWS.01 Provide a tool allowing the verification of evidence integrity
without needing to store the evidence itself (for confidentiality
reasons).

Must MS2
(M12)

TWS.02 Provide a tool allowing the verification of assessment results
integrity without needing to store the result itself (for
confidentiality reasons).

Must MS2
(M12)

TWS.03 The integrity validation of evidence and assessment results
must be done through REST API or graphical interface
(EMERALD UI).

Must MS5
(M24)

TWS.04 The TWS must be based on a real Blockchain network, with
multiple nodes and multiple organizations to guarantee
suitable decentralization and governance of the Blockchain
network.

Must MS5
(M24)

MARI.01 AI-based: MARI is a tool based on state-of-the-art artificial
intelligence, e.g., uses a transformer-based architecture

Must MS6 (M30)

MARI.02 Automatic association: MARI takes as input cloud security
controls written in natural language, metrics that validate
those controls, again written in natural language, and
automatically returns as output the association
control/metric(s) and the association control/control.

Must MS6 (M30)

MARI.03 Performance Evaluation: The performance of MARI should
improve on the performance of the Metric Recommender of
EMERALD’s predecessor project, MEDINA. We can assume that
we measure the performance of MARI with the same metrics
used for the Metric Recommender, namely precision@k and
NDCG (Normalised Discounted Cumulative Gain)

Must MS6 (M30)

MARI.04 Usage and Visualization: MARI should be invoked through
EMERALD's built-in interface, and MARI results can be
visualized through the same interface

Must MS6 (M30)

MARI.05 Strategies: MARI can act according to specific strategies, such
as considering only technical controls, or organizational
controls, or controls of a certain category, or controls whose
implementation costs less in terms of human resources, etc.
The strategies will be defined during the project.

Must MS6 (M30)

RCM.01 Multi-schema support: The repository should contain at least
an additional security scheme, apart from the EUCS that is the
scheme implemented in MEDINA Catalogue and is inherited in
EMERALD

Must MS2 (M12)

RCM.02 Accessible by the rest of components: The repository content
should be made accessible to the rest of EMERALD
components via API

Must MS2 (M12)

RCM.03 Include metrics for all schemes supported: The repository
should include metrics that could be used to assess the
compliance with one or more certification schemes

Must MS2 (M12)

RCM.04 Mapping of schemes: The repository should support the
mapping of the certification schemes contained. The scheme-
to-scheme mapping will be provided by the MARI tool and
stored in the repository. The rationale for the mapping
decision will also be stored

Should MS5 (M24)

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 73

Req. ID Description Priority Milestone

RCM.05 Import/export of security schemes in OSCAL: The repository
is able to import a new scheme defined in the OSCAL language
(this feature can also be used to update an existing scheme).
The repository is able to export any available scheme in OSCAL
format

Must MS6 (M30)

RCM.06 Import/export of security schemes in CSV format: The
repository can export a scheme to a CSV file, and import a CSV
file with the same format as a new scheme

Could MS2 (M12)

RCM.07 Support for personalized catalogues: The Repository has to
offer the user the possibility to create a personalized catalogue
of controls. These controls can be taken from the same or from
different security schemes

Must MS6 (M30)

RCM.08 Support updating/versioning of schemes: The Repository has
to maintain a versioning system of the schemes it contains, so
that if a new version is uploaded, it is able to detect the change
and notify the user that a new version is available

Should MS6 (M30)

ORCH.01 Final certificate decision: Since we do not have a dedicated
life-cycle manager component in EMERALD, the Orchestrator
must take care of the final certificate decision. The decision is
based on the input of the Evaluation component providing the
Orchestrator with an evaluation result for each control

Must MS5 (M24)

ORCH.02 REST API Gateway for UI: The Orchestrator should provide a
REST API gateway for the UI that serves a central API endpoint
for all information needed from the Orchestrator, Assessment,
Evaluation and other Clouditor components.

Must MS2 (M12)

ORCH.03 Role Based Access Control (RBAC): Since the UI wants to
selectively disclose information to users and/or roles, we need
a RBAC mechanism in our API endpoints, mainly in the
Orchestrator.

Must MS5 (M24)

ORCH.04 Manage Tools via API: We need to manage external tools, such
as evidence extractors in the Orchestrator.

Should MS5 (M24)

ORCH.05 Provide an API for audit workflow: We want to assign people
to controls within an audit instance that have a particular task.

Must MS6 (M30)

ESTORE.01 Storage of evidence as ontology entities in graph database:
The Evidence Store must store the evidence according to the
schema defined by the knowledge graph. The preferred way to
store this information is a graph database.

Must MS3
(M18)

ESTORE.02 Allow Interaction with Third-Party Tools: The Evidence store
should be allowed to accept evidence from third-party tools,
e.g., using a REST API. The evidence needs to be in the ontology
format. Therefore, information about the ontology and data
models must be available.

Should MS3
(M34)

ASSESS.01 Assessment based on evidence: The assessment should assess
evidence based on the knowledge graph.

Must MS6 (M30)

ASSESS.02 Assessment rules for 80% of the defined metrics: Assessment
rules must exist for 80% of the metrics defined in KPI4.1.

Must MS6 (M30)

ASSESS.03 Display cause of assessment result: We want to know why an
assessment result fails or passes.

Could MS6 (M30)

EVAL.01 Display cause of failing evaluation result: We want to know
why the evaluation result fails or passes. Therefore, it should
contain a list of assessment results that cause the evaluation
status to be non-compliant.

Could MS6 (M30)

EVAL.02 Evaluation based on assessment results: The evaluation
should assess the result based on all the required assessment
results stored in the database.

Must MS6 (M30)

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 73

3.3 Non-Functional Requirements

The technical requirements presented in Section 3.2 involve behavioural, or functional,
requirements of the system. They tell us how the system must behave when presented with
certain inputs or conditions.

But, in addition to these functional requirements, we have defined some non-functional
requirements for the EMERALD framework. The following subsections provide different types of
non-functional requirements, gathered in different work packages.

3.3.1 Other WP1 requirements

We present here a list of nonfunctional requirements defined in WP1. These requirements are
related with characteristics or constrains of the system more that to its behaviour. They have
not been included in any previous deliverables, so we follow each requirement with a short
paragraph on how we plan to implement it.

Requirement id WP1.01

Short title Performant framework

Description The EMERALD framework should be as performant as possible. The
response time for a user action in normal conditions should not be
larger than a few seconds.

Implementation state Partially implemented

The component tools will have to pass automatic integration tests by the CI/CD pipeline before
being integrated into the framework. The validation task in WP5 will validate both the
functionality and the performance of the EMERALD framework. Apart of these controls, the
framework infrastructure is continuously monitored, and the implemented environment allows
flexibility to upgrade the resources if they are falling short (e.g., adding more memory or CPUs
to the Kubernetes nodes, or providing extra nodes).

Requirement id WP1.02

Short title Portability

Description The EMERALD framework should be portable and work in any typical
business environment.

Implementation state Partially implemented

The components of the framework will be packaged as containers, which are a portable
technology by definition. We will use the Docker ecosystem to build and share images. For image
building we will support both Docker and Docker Compose.

Requirement id WP1.03

Short title Scalability

Description The EMERALD framework should be easily scalable when the
working conditions become severe in relation to the number of
users of the platform or intense use.

Status Partially implemented

Scalability will be based in the use of a container orchestration technology, such as Kubernetes,
which is inherently scalable. It also can provide resilience, helping to solve problems when the
resources allocation is shorter that needed.

Requirement id WP1.04

Short title Installability

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 73

Description The EMERALD framework has to be easy to install. There must exist
documents that facilitate the installation procedure.

Implementation state Partially implemented

The EMERALD environment will be defined using Infrastructure as code (IaC). By now, the
integration environment is defined, composed by a four-node Kubernetes cluster -configured by
a set of Ansible playbooks- over vSphere platform.

Requirement id WP1.05

Short title Documentation

Description All the components of the EMERALD framework will provide

associated documentation, covering as a minimum the installation,

how to use and the license.

Implementation state Partially implemented

During the project, software type deliverables will always include a companion document to
specify the characteristics of the software. Part of this document will the user manual or the
instructions for use the software.

Requirement id WP1.06

Short title Agile development

Description The EMERALD framework will be constructed using an agile
methodology, with several cycles of Design, Build, Test, and Deploy.

Implementation state Fully implemented

The management of the project has already foreseen three incremental releases -V1, V2, V3- in
months M12, M24 and M33. The WP1 team will provide several tools to make this possible, for
example:

• Source control: GitLab tool allows code management and implementation of CICD
processes that help to speed up the development.

• CI/CD processes: GitLab CI allows for continuous integration and deployment tasks to
be implemented.

• Integration automation. A GitLab Agent for Kubernetes monitors the framework
repository and will allow deploying and testing new versions of the components directly,
checking the health of the components.

Requirement id WP1.07

Short title Observability7

Description Monitoring mechanism have to be provided to measure the health
of the EMERALD Framework.

Implementation state Partially implemented

Monitoring will be provided based in the Kubernetes dashboard and the log system features.
This will provide almost instantaneous feedback on the system health, and also access to logs of
the different components in order to recognize the status of the system and detect possible
problems.

Requirement id WP1.08

7 A system is said to be observable if, for every possible evolution of state and control vectors, the current
state can be estimated using only the information from outputs. In other words, one can determine the
behaviour of the entire system from the system's outputs (wikipedia)

https://en.wikipedia.org/wiki/Observability

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 73

Short title Security

Description The EMERALD framework has to be secure. This implies correct user
authentication and authorization, secret management, preventing
intrusion, etc.

Implementation state Partially implemented

For the user management, a specific tool as Keycloak8 will be installed, which is specifically
designed to manage identity and access. Keycloak supports OpenID Connect, single-sign-on for
all the components and allows the synchronization with external identity sources. The
framework will implement role-based access control as authorization mechanism to avoid every
user has access to every functionality. The system will store API keys, certificates, and passwords
as Kubernetes Secrets, which it will then add to the pods. In WP1, we will implement network
policies - using the Traefik inverse proxy - to limit how containers and services talk to each other
inside a Kubernetes cluster, which reduces the ways attackers could get in.

3.3.2 Business driven requirements

The business-driven requirements have been worked and defined by the individual pilots in Task
5.1 of WP5 and are available in the deliverable D5.1 [18] for each of the pilots. Table 6 provides
a summary list of these requirements for completion and reference, before to proceed with the
analysis of requirements in Section 3.4.

Table 6. Business driven requirements

Req. ID Description Priority

BDRP1.01 Automate and Streamline Certification Processes Must

BDRP1.02 Secure and Reliable Long-term Evidence Storage Must

BDRP1.03 Efficient Requirement and Compliance Mapping Must

BDRP1.04 Central Management of Controls and Metrics Must

BDRP1.05 Compliance Verification for Organizational Policies Must

BDRP1.06 Ensure Software Compliance through Static Code Analysis Must

BDRP1.07 Intuitive User Experience for Compliance Monitoring Must

BDRP2.01 OpenStack Must

BDRP2.02 Reusable Metrics & Requirements Must

BDRP2.03 Transparency increase Must

BRDP2.04 Intuitive UI Must

BDRP2.05 Security Schemes for Pilot 2 Must

BDRP3.01 UI/UX Concept Must

BDRP3.02 AI Guideline Must

BDRP3.03 Integration of Internal evidence collection tools Must

BDRP3.04 Reusable Metrics Must

BDRP3.05 Security Schemes Pilot 3 Must

8 https://www.keycloak.org/

https://www.keycloak.org/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 73

Req. ID Description Priority

BDRP3.06 Custom set of requirements Must

BDRP3.07 Enhance current audit process Should

BDRP3.08 Audit Transparency Should

BDRP3.09 Manual controls Should

BDRP3.10 Safe security scheme updates Should

BDRP3.11 Checks for policy documents Must

BDRP3.12 Use of standard for export/import Should

BDRP4.01 Broad Usability & BYOCS (Bring You Own Certification Scheme) Must

BDRP4.02 Enhancing Efficiency and Functionality Must

BDRP4.03 Ensuring Traceability for Certificates and Audits Must

BDRP4.04 User-Friendly Interface for All Employees Should

BDRP4.05 Integration with Internal Tools Must

BDRP4.06 Seamless Migration and Integration Must

BDRP4.07 Documentation Should

3.3.3 UI/UX requirements (usability)

The User Interface/User Experience requirements have been developed and defined in the WP4,
and the complete description is available in the deliverable D4.1 [4]. We have extracted the list
that is shown in Table 7 for completion and reference.

Table 7. UI/UX requirements

Req. ID Description Priority

UIUX.01 Landing Page Must

UIUX.02 Audit Instance Creation View Must

UIUX.03 Requirements Overview View Must

UIUX.04 Requirements Overview View: Progress Indicators Must

UIUX.05 Requirements Overview View: Filtering and Searching Must

UIUX.06 Policy Documents Manager View Must

UIUX.07 Policy Documents Manager View: Metrics Selection Should

UIUX.08 Evidence Extractors View Must

UIUX.09 Requirement Detail View Must

UIUX.10 Requirement Detail View: Assignment Must

UIUX.11 Requirement Detail View: History Must

UIUX.12 Requirement Detail View: Evidence Must

UIUX.13 Requirement Detail View: Non-Compliance Must

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 73

Req. ID Description Priority

UIUX.14 MARI Tool View Must

UIUX.15 Certification Schemes Manager View Must

UIUX.16 Certification Schemes Manager View: BYOCS Must

UIUX.17 Certification Schemes Manager View: Import/Export Could

UIUX.18 Trustworthiness Check Must

UIUX.19 Intuitive and Smooth UI Must

UIUX.20 Reusable metrics Must

UIUX.21 Transfer of Audit to EMERALD Should

UIUX.22 Requirement Detail View: Manual Evidence Should

UIUX.23 Import/Export of information Should

3.4 Analysis of Requirements

In this section we will examine the functional requirement list from different perspectives, to
gain some insight about how the requirements represent the solution that EMERALD tries to
build.

3.4.1 Mapping of requirements to KRs

The functional requirements have been defined in Section 3.2. The map among requirements
and Key Results (KRs) offers a view on how the KRs are covered by the requirements.

Let’s first present the Key Results of the EMERALD project, as were defined in the DoA [19]. The
description of the Key Results is included below the mapping.

• KR1: EXTRACT

• KR2: CERTGRAPH

• KR3: OPTIMA

• KR4: MULTICERT

• KR5: AIPOC

• KR6: EMERALD UI/UX

• KR7: INTEROP

• KR8: PILOTS

The mapping is shown in Table 8. As a first sight, it can be affirmed that all the elicited Functional
Requirements are related to one or more KRs (note that “KR8: Pilots” is not included in the table,
as the relation with the pilot is addressed in more detail thereafter).

Table 8. Functional requirements and KRs alignment matrix

 Req. ID KR1 KR2 KR3 KR4 KR5 KR6 KR7

1 AI-SEC.01 X

2 AMOE.01 X X

3 AMOE.02 X X

4 AMOE.03 X

5 AMOE.04 X X

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 73

 Req. ID KR1 KR2 KR3 KR4 KR5 KR6 KR7

6 AMOE.05 X

7 AMOE.06 X X

8 AMOE.07 X

9 CLDISC.01 X

10 CODYZE.01 X

11 EKNOWS.01 X

12 EKNOWS.02 X

13 EKNOWS.03 X

14 EKNOWS.04 X

15 EKNOWS.05 X

16 TWS.01 X

17 TWS.02 X

18 TWS.03 X

19 TWS.04 X

20 MARI 1.0 X

21 MARI 2.0 X

22 MARI 3.0 X

23 MARI 4.0 X

24 MARI 5.0 X

25 RCM.01 X

26 RCM.02 X

27 RCM.03 X

28 RCM04 X

29 RCM.05 X

30 RCM.06 X

31 RCM.07 X

32 RCM.08 X

33 ORCH.01 X

34 ORCH.02 X

35 ORCH.03 X

36 ORCH.04 X

37 ORCH.05 X

38 ESTORE.01 X

39 ESTORE.02 X

40 ASSESS.01 X

41 ASSESS.02 X

42 ASSESS.03 X

43 EVAL.01 X

44 EVAL.02 X

KR1: EXTRACT: A framework to continuously extract knowledge on various layers of the cloud
service (infrastructure, code, business processes) and prepare suitable evidence based on them.
This result covers the improvements on existing evidence extraction tools and concepts of

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 73

MEDINA, such as AMOE. The tools enable different levels of abstraction – from low level such as
source code to higher levels, such as policies and procedures.

KR2: CERTGRAPH: A graph-based structure, the certification graph, to consolidate all necessary
information of the service and make it easily query-able. The graph-based approach allows
storing and linking heterogeneous information extracted from different evidence sources.
Furthermore, linking allows to create additional nodes in the graph that aggregate individual
aspects and fragments of information to a higher-level of combined evidence, while maintaining
traceability back to information sources.

KR3: OPTIMA: An intelligent system to select an optimized set of metrics that can be measured
to demonstrate compliance to the selected certification scheme. One of such optimizations
could be the maximum amount of re-used evidence.

KR4: MULTICERT: A tool to assess chosen metrics based on information stored in the
certification graph and to evaluate the final certificate decision.

KR5: AIPOC: By transferring the innovation results to upcoming AI certification schemes,
EMERALD establishes a proof of concept (PoC) on how to scale the CaaS approach to cloud-
based AI systems.

KR6: EMERALD UI/UX: A user interaction concept and conducted studies to show what
information each user needs in an audit process. The concept shall lead to a user interface (UI),
which is tailored to the users’ needs during all stages of an audit and guides them through the
process of identifying problems top down – from high level requirements down to specific
implementation in documents (e.g., policies) or technical specifications.

KR7: INTEROP: EMERALD will provide an interoperability layer among the trustworthy systems,
assessment results and catalogue data. Security schemes are prone to change and thus updates
would be required. EMERALD aims to mitigate this by incorporating the scheme data in a
standardized format such as OSCAL. To enable fast development and integration of external
resources, a common data format can help. Furthermore, EMERALD aims at providing
interoperability at the trustworthy evidence layer by evaluating usage of the European
Blockchain Services Infrastructure (EBSI) for its trustworthiness system.

KR8: PILOTS: Involvement of realistic use cases by potential applicants of EMERALD. This is key
to derive and validate the proposed contents of O1 – O4. PILOTS is responsible for providing
these real-world application examples and test data. The data will be forwarded to the evidence
extraction stakeholders, so the components can be fine-tuned to improve quality of the results.

3.4.2 Mapping of requirements to KPIs

Similar to the KRs, the mapping of requirements and Key Performance indicators (KPIs) offers a
view on how the KPIs are covered by the requirements.

This is the list of KPIs that have been defined in the DoA [19]:

• KPI 1.1: Provide support for evidence extraction from different sources (infrastructure,
code, processes)

• KPI 1.2: Provide novel methods for the security assessment of AI models and their
evidence generation

• KPI 2.1: Provide a schema for storing and linking heterogeneous evidence information

• KPI 2.2: Provide support traceability to information sources and extraction processes

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 73

• KPI 2.3: Provide scalability for storing/processing continuously collected evidence;
demonstrated in the pilots

• KPI 3.1: Provide scheme to scheme mapping functionality based on metrics,
recommended to the user

• KPI 3.2: Provide metric-to-requirement-mapping functionality by improving MEDINA
approaches and incorporating KPI 5.1 results

• KPI 3.3: Provide insights for the mapping decision and how the recommendation pro-
cess works

• KPI4.1: Provide realizable metrics that demonstrate compliance to at least two security
certification schemes

• KPI 4.2: Provide metric assessment for 80 % of the metrics in KPI 4.1 based on the
certification graph

• KPI 5.1: Provide realizable metrics to help evaluate at least 50% of the categories of
criteria of the BSI AIC4 that deal with the robustness of ML system, their interpretability,
and the mitigation of potentially negative impacts such as model unfairness (c.f. Chapter
6, AIC4).

• KPI 5.2: Provide a PoC for semi-automated assessment of 80% of the metrics specified
in KPI 5.1.

• KPI 6.1: Provide roles and workflows, derived from interviews with relevant users (e.g.,
project partners and advisory board members), develop mock-ups and interaction
concepts for managing the audit process

• KPI 6.2: Provide concept for the (UI) of EMERALD and integration of evidence collection
components, data bases and orchestrating components

• KPI 6.3: Provide a graphical user interface for role-based access to certification
information content

• KPI 7.1: Conventionalize import and export functionalities to take or share data with
external sources

• KPI 7.2: Incorporate input from standardisation bodies and synchronize data formats
and protocols

• KPI 8.1: Facilitate at least two different audit scenarios, one for public clouds, one for
private cloud installations

• KPI 8.2: Validate user acceptance in terms of complexity reduction

Table 9. Functional requirements and KPIs alignment matrix.

Req. ID

EXTRACT CERTGRAPH OPTIMA M-CERT AIPOC UI/UX INTEROP PILOTS

K
P

I1
.1

K
P

I1
.2

K
P

I2
.1

K
P

I2
.2

K
P

I2
.3

K
P

I3
.1

K
P

I3
.2

K
P

I3
.3

K
P

I4
.1

K
P

I4
.2

K
P

I5
.1

K
P

I5
.2

K
P

I6
.1

K
P

I6
.2

K
P

I6
.3

K
P

I7
.1

K
P

I7
.2

K
P

I8
.1

K
P

I8
.2

AI-SEC.01 X X X

AMOE.01 X

AMOE.02 X

AMOE.03 X

AMOE.04 X

AMOE.05 X

AMOE.06 X

AMOE.07 X

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 73

Req. ID

EXTRACT CERTGRAPH OPTIMA M-CERT AIPOC UI/UX INTEROP PILOTS

K
P

I1
.1

K
P

I1
.2

K
P

I2
.1

K
P

I2
.2

K
P

I2
.3

K
P

I3
.1

K
P

I3
.2

K
P

I3
.3

K
P

I4
.1

K
P

I4
.2

K
P

I5
.1

K
P

I5
.2

K
P

I6
.1

K
P

I6
.2

K
P

I6
.3

K
P

I7
.1

K
P

I7
.2

K
P

I8
.1

K
P

I8
.2

CLDISC.01 X

CODYZE.01 X

EKNOWS.01 X

EKNOWS.02 X

EKNOWS.03 X

EKNOWS.04 X

EKNOWS.05 X

TWS.01 X

TWS.02

TWS.03

TWS.04 X

MARI 1.0 X X X

MARI 2.0 X X X

MARI 3.0 X X X

MARI 4.0 X X X

MARI 5.0 X X X

RCM.01 X X

RCM.02

RCM.03 X X

RCM04 X X

RCM.05 X X

RCM.06 X

RCM.07 X X

RCM.08 X X

ORCH.01 X X

ORCH.02 X

ORCH.03 X

ORCH.04 X

ORCH.05

ESTORE.01 X X

ESTORE.02 X

ASSESS.01 X X

ASSESS.02 X

ASSESS.03

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 73

Req. ID

EXTRACT CERTGRAPH OPTIMA M-CERT AIPOC UI/UX INTEROP PILOTS

K
P

I1
.1

K
P

I1
.2

K
P

I2
.1

K
P

I2
.2

K
P

I2
.3

K
P

I3
.1

K
P

I3
.2

K
P

I3
.3

K
P

I4
.1

K
P

I4
.2

K
P

I5
.1

K
P

I5
.2

K
P

I6
.1

K
P

I6
.2

K
P

I6
.3

K
P

I7
.1

K
P

I7
.2

K
P

I8
.1

K
P

I8
.2

EVAL.01

EVAL.02

It can be seen from Table 9 that some of the KPIs are not directly addressed by any technical
requirements. But this does not mean they are not covered by the EMERALD framework. In fact,
they are generic KPIs that affect the whole framework and are addressed in a holistic manner.
These are the KPIs in question (coloured in the table):

• KPI 6.1 (related to providing roles and workflows, develop mock-ups for the audit
process): It is closely related with all the work being carried in the WP4, where an UI/UX
design process with stakeholders is leading to the definition of the roles and a set of
mock-ups.

• KPI 8.1, KPI 8.2 (related with pilots’ implementation and validation): This aspect is being
covered by the WP5, where the pilots have been designed and, in general, the whole
EMERALD framework is covering them.

3.4.3 Mapping of requirements to Business Driven Requirements

In the end, the business-driven requirements (BDRs) must be implemented in the components.
To ensure the technical implementation, the business-driven requirements were reviewed in
collaboration with WP5 in joint workshops and mapped to technical requirements. This work
assigns a list of component technical requirements to each business-driven requirement.

The alignment in Table 10is intended to show that each BDR defined by the Pilots has one or
more corresponding components that implement it. In this way, a Pilot can identify the
component responsible for implementing each BDR and track its coverage along the time.

A BDR with no associated functional requirements means that it is either out of scope of the
EMERALD framework -as it is currently defined- or that the framework doesn’t contemplate all
the user needs. In the latter case, this table will serve for components designers to identify
missing functionalities from the Pilots perspective, thus aligning both perspectives used for the
elicitation of the functional requirements.

Table 10. Technical requirements vs Business Requirements alignment matrix.

Req. ID

Pilot 1
Ionos

Pilot 2
Cloudferro

Pilot 3
Fabasoft

Pilot 4
Caixabank

B
D

R
P

1
.0

1

B
D

R
P

1
.0

2

B
D

R
P

1
.0

3

B
D

R
P

1
.0

4

B
D

R
P

1
.0

5

B
D

R
P

1
.0

6

B
D

R
P

1
.0

7

B
D

R
P

2
.0

1

B
D

R
P

2
.0

2

B
D

R
P

2
.0

3

B
D

R
P

2
.0

4

B
D

R
P

2
.0

5

B
D

R
P

3
.0

1

B
D

R
P

3
.0

2

B
D

R
P

3
.0

3

B
D

R
P

3
.0

4

B
D

R
P

3
.0

5

B
D

R
P

3
.0

6

B
D

R
P

3
.0

7

B
D

R
P

3
.0

8

B
D

R
P

3
.0

9

B
D

R
P

3
.1

0

B
D

R
P

3
.1

1

B
D

R
P

3
.1

2

B
D

R
P

4
.0

1

B
D

R
P

4
.0

2

B
D

R
P

4
.0

3

B
D

R
P

4
.0

4

B
D

R
P

4
.0

5

B
D

R
P

4
.0

6

B
D

R
P

4
.0

7

AI-SEC.01 X X

AMOE.01 X X X

AMOE.02 X X X

AMOE.03 X

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 73

Req. ID

Pilot 1
Ionos

Pilot 2
Cloudferro

Pilot 3
Fabasoft

Pilot 4
Caixabank

B
D

R
P

1
.0

1

B
D

R
P

1
.0

2

B
D

R
P

1
.0

3

B
D

R
P

1
.0

4

B
D

R
P

1
.0

5

B
D

R
P

1
.0

6

B
D

R
P

1
.0

7

B
D

R
P

2
.0

1

B
D

R
P

2
.0

2

B
D

R
P

2
.0

3

B
D

R
P

2
.0

4

B
D

R
P

2
.0

5

B
D

R
P

3
.0

1

B
D

R
P

3
.0

2

B
D

R
P

3
.0

3

B
D

R
P

3
.0

4

B
D

R
P

3
.0

5

B
D

R
P

3
.0

6

B
D

R
P

3
.0

7

B
D

R
P

3
.0

8

B
D

R
P

3
.0

9

B
D

R
P

3
.1

0

B
D

R
P

3
.1

1

B
D

R
P

3
.1

2

B
D

R
P

4
.0

1

B
D

R
P

4
.0

2

B
D

R
P

4
.0

3

B
D

R
P

4
.0

4

B
D

R
P

4
.0

5

B
D

R
P

4
.0

6

B
D

R
P

4
.0

7

AMOE.04 X X

AMOE.05 X

AMOE.06 X

AMOE.07 X

CLDISC.01 X

CODYZE.01 X X X

EKNOWS.01 X

EKNOWS.02

EKNOWS.03

EKNOWS.04

EKNOWS.05 X

TWS.01 X X X X X

TWS.02 X X X X X

TWS.03 X X X

TWS.04 X X X X

MARI 1.0 X X X X X X X

MARI 2.0 X X X X X X X X X

MARI 3.0

MARI 4.0 X X

MARI 5.0 X X X X X X X

RCM.01 X X

RCM.02 X X

RCM.03 X

RCM04 X X X

RCM.05 X X X X

RCM.06 X X

RCM.07 X X X

RCM.08 X X

ORCH.01 X X X X X X X

ORCH.02 X X X X X X X

ORCH.03 X X

ORCH.04 X X X X

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 73

Req. ID

Pilot 1
Ionos

Pilot 2
Cloudferro

Pilot 3
Fabasoft

Pilot 4
Caixabank

B
D

R
P

1
.0

1

B
D

R
P

1
.0

2

B
D

R
P

1
.0

3

B
D

R
P

1
.0

4

B
D

R
P

1
.0

5

B
D

R
P

1
.0

6

B
D

R
P

1
.0

7

B
D

R
P

2
.0

1

B
D

R
P

2
.0

2

B
D

R
P

2
.0

3

B
D

R
P

2
.0

4

B
D

R
P

2
.0

5

B
D

R
P

3
.0

1

B
D

R
P

3
.0

2

B
D

R
P

3
.0

3

B
D

R
P

3
.0

4

B
D

R
P

3
.0

5

B
D

R
P

3
.0

6

B
D

R
P

3
.0

7

B
D

R
P

3
.0

8

B
D

R
P

3
.0

9

B
D

R
P

3
.1

0

B
D

R
P

3
.1

1

B
D

R
P

3
.1

2

B
D

R
P

4
.0

1

B
D

R
P

4
.0

2

B
D

R
P

4
.0

3

B
D

R
P

4
.0

4

B
D

R
P

4
.0

5

B
D

R
P

4
.0

6

B
D

R
P

4
.0

7

ORCH.05 X X X X X X

ESTORE.01 X X X

ESTORE.02 X X

ASSESS.01 X

ASSESS.02 X

ASSESS.03 X X X

EVAL.01 X X

EVAL.02 X

As mentioned above, each BDR to be implemented should be related to at least one component.
Otherwise, it would mean that no component is implementing such requirement. According to
the Table 10, the BDRs that fall into this category are the following:

• BDRP1.07 - Intuitive User Experience for Compliance Monitoring: this requirement is
addressed by all the UI/UX requirements developed in WP4.

• BDRP3.07 - Enhance current audit process: It is a very generic requirement that must be
addressed by the whole EMERALD platform, as all components are involved in the
improving the audit process.

3.4.4 Prioritization and current status

Table 11 depicts the status of the functional requirements foreseen for M12 (at milestone MS2:
Components V1), the due date of this deliverable. For a complete table with the status of all
requirements, view the APPENDIX A: Current status of requirements.

Table 11. Requirements prioritization matrix

Req. ID Title Priority Timeline Status

AI-SEC.01 The extractor tool includes selected criteria MUST M12 (C-v1) 35%

AMOE.01 Upload PDF document MUST M12 (C-v1) 90%

AMOE.04 Compare results from multiple documents SHOULD M12 (C-v1) 70%

TWS.01 Provide integrity proof of evidence MUST M12 (C-v1) 75%

TWS.02 Provide integrity proof of assessment results MUST M12 (C-v1) 75%

RCM.01 Multi-schema support MUST M12 (C-v1) 90%

RCM.02 Accessible by the rest of components MUST M12 (C-v1) 100%

RCM.03 Include metrics for all schemas supported MUST M12 (C-v1) 30%

RCM.06
Import/export of security schemes in CSV
format

COULD M12 (C-v1) 60%

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 73

Req. ID Title Priority Timeline Status

ORCH.02 REST API Gateway for UI MUST M12 (C-v1) 15%

3.5 Requirements Summary Dashboard

Table 12 shows a summary of requirements by component, with their status -in a broad vision
divided in not started, partially implemented and fully implemented- at the moment of writing.

Table 12. Summary table of requirements status at M12 (by component)

Component Not started
Partially

implemented
Fully

implemented
TOTAL

AI-SEC 0 1 0 1

AMOE 4 3 0 7

Discovery 0 1 0 1

Codyze 0 1 0 1

eKnows 1 4 0 5

TWS 0 4 0 4

MARI 0 5 0 5

RCM 1 6 1 8

Evidence Store 0 2 0 2

Orchestrator 3 2 0 5

Assessment 1 2 0 3

Evaluation 1 1 0 2

NFR (WP1) 0 7 1 8

TOTAL 11 39 2 52

It can be observed that, because of the different ranges of functionality of each component, the
requirements are not equally distributed among the components (see Figure 4). It is also the
case that not all components have yet the same level of definition. In this respect, the
components with the most requirements are RCM (with 8), AMOE (with 7) and MARI,
Orchestrator and eknows (with 5 each).

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 73

Figure 4. Number of requirements per component

Regarding the status of the requirements at M12 (see Figure 5), most of them are in a work in
progress status (32 out of 52); the not-started requirements are half of the started ones (16 out
of 52); and few requirements are already fully implemented (4 of 52).

Figure 5. Requirement status

Figure 6 shows the status of requirements by component. Logically, the same pattern that in the
overall view can be observed, i.e., all the components have a majority of partially implemented
requirements, with some requirements nor yet started and only a few completed requirements.

Not started; 21%

Partially ; 75%

Fully impl.; 4%

Requirement status

Not started

Partially

Fully impl.

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 39 of 73

Figure 6. Requirement status per component

Finally, let’s have a look to the coverage of the requirement sets to the different pilots. Table 13
shows the number of requirements for each component that cover some aspect of each pilot (a
pilot requirement).

We can see that the most covered pilot is Pilot 4, with 50 requirements, followed by Pilot 3 (38),
Pilot 2 (17) and Pilot 1 (16). The colour shows, for each pilot, which component contributes the
most (red), with the intensity decreasing as the contribution of the component to the pilot
decreases.

Table 13. GENERAL VIEW: Components vs Pilot

Component Pilot 1 Pilot 2 Pilot 3 Pilot 4 TOTAL

AMOE 3 0 5 4 12

MARI 3 5 12 5 25

RCM 4 2 7 4 17

TWS 3 4 3 7 17

Cloud. Assessment 0 1 2 2 5

Cloud. Discovery 0 1 0 0 1

Cloud. Evaluation 2 0 0 1 3

Cloud. Evidence Store 0 0 2 3 5

Cloud. Orchestrator 3 2 3 18 26

Codyze 1 0 0 1 2

eKnows 1 0 0 1 2

AI-SEC 0 0 1 1 2

NFR 1 0 0 6 7

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 40 of 73

4 EMERALD Framework detailed view

This section describes the architecture of the EMERALD CaaS framework. It provides a succinct
description of the components that make up the EMERALD framework, their workflows,
implemented interfaces, and sequence diagrams.

4.1 Data model

The EMERALD data model was defined in D1.1 [1], that describes the different data classes used
by the components, and the connections within and between components. The data model is
useful mainly for the developers of the EMERALD framework in order to construct the software
classes to manage the required data structures.

The data model for the whole EMERALD framework is shown in Figure 7, where each component
is represented in a box, that includes inside the data structures it handles. The background
colour of the box denotes the project work package to which the component pertains. Thus,
Evidence Collection components (WP2) are coloured in orange, whereas WP3 components are
coloured in teal.

The EMERALD project uses some of the components that were part of the MEDINA data model
– such as the Evidence Store, the Orchestrator, the Repository of Controls and Metrics (RCM)
and the Trustworthiness System.

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 41 of 73

www.emerald-he.eu

Figure 7. EMERALD data model (D1.1 [1])

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 42 of 73

www.emerald-he.eu

The main data structures used by EMERALD components are listed in the following:

AMOE

- AmoePolicyFile: serves as an internal representation of the uploaded file, which can be
linked to a Cloud Service via it’s id.

Clouditor-Discovery

- Resource: stores any cloud resource, also used in the EMERALD Graph Ontology.

Codyze

- CodyzeSarif: where the generated analysis report in SARIF9 is stored. Moreover, Codyze
processes the findings in the SARIF report into evidence for the EMERALD framework.

eknows

- EknowsSourceCodeFile serves as an internal representation of the source code file to be
analysed.

MARI

- SecurityRequirementsAssociation: stores association among requirements or controls, as a
result of are the MARI processing.

- MetricRequirementAssociation: stores association among metrics and requirements or
controls.

RCM

- SecurityControlFramework: defines the standard schema (e.g., EUCS)
- SecurityCategory: defines a category of the schema.
- SecurityControl: defines a control of the category and can have a list of sub-controls.
- SecurityRequirement: defines a requirement inside a control.
- SimilarControls: supports mapping among controls of different schemes.
- ImplementationGuidelines: help the user with the implementation of the requirements.
- SecurityMetric: defines a metric, what to measure to assess the collected evidence.

Orchestrator

- CloudService: holds the logical representation of a single service.
- TargetOfEvaluation: combines a cloud service with one dedicated security catalogue to

produce a Certificate.
- Certificate: representing different states of a certificate.
- Control: representation of either a control, requirement or objective, as every security

scheme uses different names.
- Catalogue: represents the security schema.
- Category: represents a category of controls in the schema.

Evidence Store

- Evidence: holds the necessary information regarding the collected evidence, including the
timestamp describing when the evidence was created, the Cloud Service the evidence

9 Static Analysis Results Interchange Format (SARIF), https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-
v2.1.0.html

http://www.emerald-he.eu/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 43 of 73

www.emerald-he.eu

belongs to, the ID of the evidence collector tool that created the evidence and the resource
properties.

Assessment

- MetricConfiguration: contains the target value and the operator used in the assessment.
- AssessmentResult: contains the result of the assessment, including information about the

evidence and the metric.

Evaluation

- EvaluationResult: maps the measurements of individual metrics and combines them
according to the mapping of a metric to a Control. Includes a timestamp and a status, and
also related information like control or cloud service.

As mentioned before, we only provide in this document a general view of the data model,
because specific details of the data models used by each component has been provided in
deliverable D1.1 – Data Modelling and interaction mechanisms [1]. For more detailed information,
please go to this deliverable.

4.2 Component description (components cards & sequence diagrams)

This section contains a description of the EMERALD components. It covers the evidence
extraction tools —that extract, store and assess the evidence— and the tools that provide and
assist with the management of the security schemes and metrics.

Please note that the data-oriented point of view of each component was already covered in D1.1
[1], so this document will not repeat it, but has only presented an overview of the data model
for completeness in Section 4.1.

4.2.1 Evidence Collectors

4.2.1.1 AI-SEC

Component
Name

AI-SEC

Main
functionalities

The component provides the following functionalities:

• Extracting evidence by given machine learning model, data, criteria

• Providing evidence to the Orchestrator to further assessment
Sub-
components
Description

Currently no division in subcomponents is planned

Main logical
Interfaces
offered

Interface name Description Interface technology

Management This interface handles
operations related to the
management of ML
models, such as uploading,
downloading, updating,
and deleting models.

Rest API

Inference This interface enables the
execution of the model to
make predictions or
perform inference. The
REST API here would allow

Rest API

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 44 of 73

www.emerald-he.eu

users to send data for
inference and receive
predictions in return.

Monitoring This interface tracks the
performance of the model
over time, monitors
inference requests, and
logs errors.

Rest API

Interaction
with other
components

• Evidence Store
o Submit evidence to be stored

Relevant
sequence
diagram/s

See section 4.2.1.1.1

Requirements
Mapping

List of requirements covered by this component:

• AI-SEC.01: the extractor tool includes selected criteria
Technology
used

We use some Open Source to extract evidence, such as CLEVER10 and LIME11

Related KR KR5

WP and task WP2 – T2.4

License Apache-2.0

Partner Fraunhofer AISEC

4.2.1.1.1 Sequence diagram

Figure 9 shows the sequence diagram of the AI-SEC component. The user configures the AI-SEC
parameters in the CI/CD pipeline, which triggers the AI-SEC analysis to start. Evidence is then
gathered and mapped in the ontology and sent to the Evidence Store.

Figure 9. AI-SEC sequence diagram

10 https://github.com/IBM/CLEVER-Robustness-Score
11 https://github.com/marcotcr/lime

http://www.emerald-he.eu/
https://github.com/IBM/CLEVER-Robustness-Score
https://github.com/marcotcr/lime

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 45 of 73

www.emerald-he.eu

4.2.1.2 AMOE

Component
Name

Assessment and Management of Organisational Evidence (AMOE)

Main
functionalities

The component provides the following functionalities:

• Gathering and processing organizational evidence

• Providing evidence to the Evidence Store and Assessment
components

Sub-
components
Description

Organizational evidence is collected by applying NLP and organisational
metrics to an uploaded document. The processing part transforms this
evidence in the form of technical evidence. This transformed evidence is
then provided to the security assessment of the Clouditor which can
handle such technical evidence.

Main logical
Interfaces

Interface name Description Interface technology

UI GUI to
Upload documents
Retrieve evidence
Set assessment results
Submit/forward assessment
results

webservice

API Upload documents
Retrieve evidence
Set assessment results
Submit/forward assessment
results

REST

Interaction
with other
components

Interfacing Component Interface Description

Evidence Store Send collected evidence

Orchestrator Retrieve metric configurations

Repository of Controls and
Metrics

Retrieve metrics and requirements as
needed

Relevant
sequence
diagram/s

See section 4.2.1.2.1

Requirements
Mapping

List of requirements covered by this component:

• AMOE.01: Upload PDF document

• AMOE.02: Provision of extracted evidence to EvidenceStore
(Orchestrator/Clouditor)

• AMOE.03: Refine evidence extraction approach

• AMOE.04: Compare results from multiple documents

• AMOE.05: Select metrics per document

• AMOE.06: Classify document, select respective metrics (optional)

• AMOE.07: Metric states
Technology
used

Python

WP and task WP2: T2.3
Related KR KR1, KR2, KR8
License Apache 2.0

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 46 of 73

www.emerald-he.eu

Partner FABA

4.2.1.2.1 Sequence diagram

Figure 10 shows the sequence diagram of the AMOE component. AMOE extracts evidence which
target specific parts of policy documents. After the extraction process, the evidence can be
inspected in a GUI that comes with AMOE or retrieved via the API.

AMOE works with metrics from the RCM and accesses the target values from the Orchestrator
API. Files are uploaded by the Compliance Manager, and then processed to get the evidence.
Once the evidence is confirmed by the Internal Auditor, it can be forwarded to the Evidence
Store. AMOE provides its functionalities to the EMERALD UI via an API.

Figure 10. AMOE sequence diagram

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 47 of 73

www.emerald-he.eu

4.2.1.3 Clouditor-Discovery

Component
Name

Clouditor-Discovery

Main
functionalities

The component provides the following functionalities:

• Extracts cloud configurations for different Cloud resources (e.g.,
Virtual Machine, Object Storage, Network Interface) from several
Cloud providers (e.g., Azure) via API calls.

• Stores the extracted information in the EMERALD evidence format
in the Evidence Store component.

Sub-
components
Description

Currently no division in subcomponents planned

Main logical
Interfaces
offered

Interface name Description Interface technology

CLI A CLI is available Cobra12/Viper13

API The following endpoints are
available:

• Start to start the
discovery.

• ListResources lists
discovered resources.

REST/gRPC

Interaction
with other
components

• Evidence Store: Submit evidence to the Evidence Store

• Orchestrator: Registers the Clouditor-Discovery component in the
Orchestrator (not yet implemented, to be discussed).

Relevant
sequence
diagram/s

See section 4.2.1.3.1

Requirements
Mapping

List of requirements covered by this component:

• CLDISC.01: Discovery of security features of infrastructure
components

Technology
used

Go14, gRPC15

Related KR KR1_EXTRACT
WP and task WP2 – T2.5
License Apache-2.0
Partner Fraunhofer AISEC

4.2.1.3.1 Sequence diagram

Figure 11 shows the sequence diagram of the Clouditor-Discovery component. Clouditor-
Discovery identifies various cloud resources and discovers security-relevant configurations, such
as encryption in use, restricted ports, etc., to enhance security compliance.

It is registered in the system by an AuthorizedEntity, and then registers itself in the Orchestrator.
Once started, it continuously retrieves runtime information from the cloud resources, and stores
them in the EvidenceStore.

12 https://github.com/spf13/cobra
13 https://github.com/spf13/viper
14 https://go.dev/
15 https://grpc.io/

http://www.emerald-he.eu/
https://github.com/spf13/cobra
https://github.com/spf13/viper
https://go.dev/
https://grpc.io/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 48 of 73

www.emerald-he.eu

Figure 11. Clouditor-Discovery sequence diagram

4.2.1.4 Codyze

Component
Name

Codyze

Main
functionalities

The component provides the following functionalities:

• Scans source code for insecure implementations of security-
relevant features (e.g., transport encryption, logging,
authentication & authorisation, etc.)

• Analyse interactions between cloud service components from
infrastructure-as-code (e.g., What cloud resources are consumed?,
Are interactions secure?, Are used resources up-to-date?, etc.)

• Analyse development processes (e.g., Are secure development
processes followed?, Is the provenance of source code
guaranteed?, What measures are taken to secure the development
pipeline?, etc.)

Sub-
components
Description

Currently no division in subcomponents planned

Main logical
Interfaces
offered

Interface name Description Interface technology

CLI A CLI incl. configuration file to
configure Codyze and set
execution/analysis
parameters.

Kotlin Clikt library16

Interaction
with other
components

• Orchestrator
o Request information on cloud service to be analysed

• Evidence Store
o Submit evidence to be stored

16 https://ajalt.github.io/clikt/

http://www.emerald-he.eu/
https://ajalt.github.io/clikt/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 49 of 73

www.emerald-he.eu

Relevant
sequence
diagram/s

See section 4.2.1.4.1

Requirements
Mapping

List of requirements covered by this component:

• CODYZE.01: Extraction of security features from source code
Technology
used

Kotlin17

Related KR KR1

WP and task WP2 – T2.2

License Apache-2.0

Partner Fraunhofer AISEC

4.2.1.4.1 Sequence diagram

Figure 12 shows the sequence diagram of the Codyze component. Codyze provides evidence
extraction from source code of cloud services. It analyses and generates evidence results that
indicate if code segments are compliant or non-compliant to specified requirements. These
evidence results are submitted to the Evidence Store for storage and further processing.

As in the case of AI-SEC, it is recommended to run it as part of a CI/CD pipeline, that prevents
the deployment of non-compliant services and application. For that, some initial configuration
is needed.

Figure 12. Codyze sequence diagram

17 https://kotlinlang.org/

http://www.emerald-he.eu/
https://kotlinlang.org/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 50 of 73

www.emerald-he.eu

4.2.1.5 eknows

Component
Name

eknows

Main
functionalities

The component provides the following functionalities:

• Static code analysis.

• Language-independent frontends (currently >16 programming
languages, including Java, Python, Cobol, C++, etc.).

• Rapid development platform for software tools such as documentation
generators and tools for reverse engineering and code visualization.

• Extraction of business rules from code.

Sub-
components
Description

eknows is a Java-based software platform to build reverse engineering tools
and documentation generators. The platform provides a modular extensible
set of software components, which facilitate the rapid development of tools
in program comprehension, documentation generation, and software
reverse engineering. Support for multiple programming languages in terms
of language-specific extraction components and language-independent
analysis is a key feature of the platform.
The platform (see Figure 13) provides reusable components that facilitate (i)
language parsing (extraction), (ii) transformation of source code into a
generic abstract syntax tree (GASTM), (iii) structural and behavioural
analysis of software, and (iv) reporting and visualization of analysis results.

Figure 13. Overview of eknows platform components

Tools built on top of eknows integrate required software components as-is
and add functionality required for a specific use case.

Main logical
Interfaces
offered

Interface name Description Interface technology

Java API eknows can be added as a set
of Java libraries (eknows-core,
eknows-frontends, eknows-
analysis, etc.) to call its
components.

Java

REST
(maybe)

The analyzation of source code
files can be triggered via a
REST endpoint.

HTTP / REST

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 51 of 73

www.emerald-he.eu

CLI The analyzation of source code
files can be triggered via a
command line interface.

stdin/stdout

Note: REST interface does not exist yet, however, if needed, it will be
developed within EMERALD.

Interaction with
other
components

• Evidence Store: Sends (raw) evidence.

• CI/CD Pipeline: Starts analyzation of source code files by calling a trigger
provided by eknows.

Relevant
sequence
diagram/s

See section 4.2.1.5.1

Requirements
Mapping

The requirements covered by this component are:

• EKNOWS.01 – Integration into existing systems

• EKNOWS.02 – Resilience while analysing erroneous code

• EKNOWS.03 – Multi-language support

• EKNOWS.04 – Support EMERALD evidence format

• EKNOWS.05 – Static code analysis

Technology
used

Java Ecosystem

Related KR KR1 EXTRACT
WP and task WP2 – T2.2
License eknows-core, reused frontends and reused analyses

eknows Binary Usage Software License
eknows extractor
Apache License, Version 2.0

Partner SCCH

4.2.1.5.1 Sequence diagram

Figure 14 shows the sequence diagram of the eknows component. eknows supports the creation
of evidence extraction functions by reusing prefabricated parsing, analysis, and generation
modules, with the mission to verify if application source code complies to security requirements.

eknows can be integrated into CI/CD pipelines by using the binary distribution. Findings are
generated as console output. This output will be submitted to the Evidence Store of the
EMERALD framework in the format of the CertGraph ontology.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 52 of 73

www.emerald-he.eu

Figure 14. eknows sequence diagram

4.2.2 TWS – Trustworthiness System

Component
Name

Trustworthiness System (TWS)

Main
functionalities

The component provides the following functionalities:

• Maintains an improved audit trail of evidence and assessment
results.

• Provides a manual and automatic way of verification of
evidence and assessment results integrity.

• Provides a record of information on a verifiable way
(verification).

• Provides a record of information on a permanent way
(traceability).

• Guarantees resistance to modification of stored data
(integrity).

Sub-components
Description

Blockchain network, use of a real implementation of a Blockchain
network. EBSI will be considered as the first option for the
deployment.
Blockchain client, for providing the information
(evidence/assessment results) to be saved on the Blockchain.
Smart contract, deployed on the Blockchain network, for information
(evidence/assessment results) writing and reading operations as well
as events generation indicating the provision of new information.
Viewer tool, for subscription to the Blockchain based events and
notification to the different viewer clients.
Graphical viewer client, for gathering and showing all the
information saved on the Blockchain (and be able to manually verify
it, without needing any interaction with the Blockchain).
Automatic verification service, for evidence and assessment results
integrity automatic check to be integrated in the GUI.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 53 of 73

www.emerald-he.eu

Main logical
Interfaces
offered

Interface name Description Interface technology

Blockchain
client

It provides: i) the
required evidence and
assessment results to be
saved on the Blockchain,
and ii) a way to obtain
or check the evidence
and assessment results
saved on the Blockchain.

REST API

Graphical
Viewer Client

It provides a GUI to
manually check
evidence and
assessment results
saved on the Blockchain.

Web

Automatic
Verification
Service

It provides a GUI for
automatic verification of
the integrity of evidence
and assessment results.

REST API

Interaction with
other
components

Interfacing Component Interface Description

Assessment The Assessment will provide (and check,
if needed) the information
(evidence/assessment results) to be
saved on the Blockchain by means of
the Blockchain client interface.

EmeraldUI The automatic verification service will
provide the integrity verification
information to the EmeraldUI to be
shown to the EMERALD users.

Auditors The auditors will check the information
saved on the Blockchain by means of
the graphical viewer client interface
(manual way) or the automatic
verification service interface (automatic
way).

Relevant
sequence
diagram/s

See section 4.2.2.1

Requirements
Mapping

• TWS.01: Provide integrity proof of evidence

• TWS.02: Provide integrity proof of assessment results

• TWS.03: Provide access through REST API or graphical interface

• TWS.04: Use a general purpose public-private Blockchain network
Technology used Solidity, NodeJS, React, EBSI
Related KR KR7: INTEROP – Interoperable assessment, evidence and catalogue

data
WP and task WP3 – T3.5
License Proprietary
Partner TECNALIA

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 54 of 73

www.emerald-he.eu

4.2.2.1 Sequence diagram

4.2.2.1.1 System recording

Figure 15 shows the sequence diagram of the TWS Recording component. TWS Recording
receives from the Assessment component the information related to evidence and assessment
results to be recorded in the Blockchain. Once this is done, the automatic verification service
will be able to validate its integrity.

Figure 15. TWS System Recording sequence diagram

4.2.2.1.2 System Verification

Figure 16 shows the sequence diagram of the TWS Verification component. Supposing that in a
previous step TWS Recording has recorded evidence in the Blockchain, an Auditor could want to
check their integrity. For that, it uses the User Interface component, EmeraldUI, that calls the
TWS Verification API. When required, the TWS Verification requests the current values of
evidence stored in the Assessment component - the EMERALD’s internal evidence storage-,
calculates the hash and compares it with the hash of the same evidence previously recorded in
the Blockchain. The validation result can be true or false.

The same process that happens for the evidence can be replicated for the assessment results.

In the case of the automatic verification, it is not the Auditor user, through EmeraldUI, who calls
the required components, retrieves hashes and makes the manual checking. In this case it only
calls the TWS Verification, which includes a sub-component that executes the required process
to retrieve the actual evidence -from the Assessment -, calculate its hash, and compare it with
the stored evidence hash.

The same automatic check process is replicated for the assessment results.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 55 of 73

www.emerald-he.eu

Figure 16. TWS System Verification sequence diagram

4.2.3 MARI - Mapping Assistant for Regulations with Intelligence

Component
Name

Mapping Assistant for Regulations with Intelligence (MARI)

Main
functionalities

The component creates an automatic association between:
● A security control and a security metric.
● Two security controls from two different certification schemes.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 56 of 73

www.emerald-he.eu

Sub-
components Des
cription

● Feature extractor, based on a state-of-the-art NLP pre-trained
model for transforming textual descriptions of metrics and
controls into feature vectors.

● Clustering tool, for obtaining metric-control associations.

Main logical
Interfaces
offered

Interface name Description Interface technology

API API to access MARI
functionalities

REST API

Interaction with
other
components

● Repository of Controls and Metrics (RCM): MARI reads controls
and metrics from the RCM and produces associations, which
are then stored back in the RCM.

● EMERALD UI: MARI will interface with the EMERALD UI
developed in WP4, through which it will be possible to view
the results of control/metric associations and control/control
associations.

Relevant
sequence
diagram/s

See section 4.2.3.1

Requirements
Mapping

● MARI.01: AI-based
● MARI.02: Automatic association
● MARI.03: Performance Evaluation
● MARI.04: Usage and Visualization
● MARI.05: Strategies

Technology used Python

Related KR KR3_OPTIMA

WP and task WP3 – T3.3

License Open Source with license Apache 2.0

Partner CNR

4.2.3.1 Sequence diagram

Figure 17 shows the sequence diagram of the MARI component. MARI is an intelligent system
capable of selecting the optimal set of metrics to evaluate the cloud system’s compliance within
the certification schemes.

The Compliance Manager triggers MARI, that will call the RCM to obtain the controls and metrics
stored there. After the analysis, MARI will return the control/control associations and the
control/metric associations to the RCM.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 57 of 73

www.emerald-he.eu

Figure 17. MARI sequence diagram

4.2.4 RCM - Repository of Controls and Metrics

Component
Name

Repository of Controls and Metrics (RCM)

Main
functionalities

The component provides the following functionalities:

• Stores and manages certification schemes, supporting multi-scheme
and multi-level certification. The RCM also incorporates the definition
of the metrics used in EMERALD to assess evidence.

• The RCM provides mechanisms to update the catalogues and maintain
a versioning system and will allow importing and exporting catalogues
into/from the RCM using OSCAL as exchange format.

• Manages other related information, such as the controls mappings
provided by the MARI component, the control implementation
guidelines and a self-assessment questionnaire to assess compliance
with a scheme.

Sub-
components
Description

Frontend: This sub-component contains the graphical user interface of the
RCM (It will be part of the EmeraldUI component and communicate with the
backend via the API). It allows users to filter the view and select the set of
information they want to check from the existing schemes (e.g., controls of
a certain scheme, requirements of a certain assurance level, metrics related
to some controls, etc).
Backend: is the core sub-component of the RCM. It implements the APIs to
perform the actual management of the scheme data, considering the filters
set by the user through the UI or by calling the API. The RCM will contain two
backends: i) Backend converter, which is dedicated to the scheme
conversions to/from OSCAL, and ii) Backend, which deals with the
management of schemes and metrics.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 58 of 73

www.emerald-he.eu

Registry: sub-component provided by the framework. Ties the other sub-
components together and enables them to communicate with each other.

Main logical
Interfaces
offered

Interface name Description Interface technology

Schema Retrieves information about
a certification scheme
(metrics, requirements,
controls, etc) as needed

Rest API

Mapping Sets a control mapping
among schemes, provided by
the MARI component

Rest API

Import-export Manages import/export of
schemes in OSCAL

Rest API

Interaction
with other
components

• Clouditor-Orchestrator, which retrieves the information about the
schemes and the metrics from the RCM.

• Mapping Assistant for Regulations with Intelligence (MARI), which
provides the results of the mapping functionality to the RCM in order to
store the results for further uses.

• EmeraldUI, which retrieves the information from the RCM to present it
in the User Interface. On the other hand, the user may want to introduce
new schemes, new versions of a scheme, or answer the self-assessment
questionnaire.

• AMOE, a knowledge extractor that obtains from the RCM the definition
of the security metrics needed to evaluate evidence from policy
documents.

Relevant
sequence
diagram/s

See Section 4.2.4.1

Requirements
Mapping

The requirements covered by this component are:

• RCM.01: Multi-schema support

• RCM.02: Accessible by the rest of components

• RCM.03: Include metrics for all schemes supported

• RCM.04: Mapping of schemes

• RCM.05: Import/export of security schemes in OSCAL

• RCM.06: Import/export of security schemes in CSV format

• RCM.07: Support for personalized catalogues

• RCM.08: Support updating/versioning of schemes

Technology
used

Microservices architecture bassed in a jHipster framework:

• Backend side with Java stack with Spring Boot

• Frontend with Angular and Bootstrap

Related KR KR7: INTEROP
WP and task WP3 – T3.2
License Apache license v2.0
Partner TECNALIA

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 59 of 73

www.emerald-he.eu

4.2.4.1 Sequence diagram

Figure 18 shows the sequence diagram of the RCM component. The RCM provides a central
point in the EMERALD framework where the certification schemes are stored and managed. It
also incorporates the definition of the metrics used in EMERALD.

In the configuration, the RCM can receive partial updates or totally new schemes from the
Compliance Manager, who can also consult the schemes in the provided User Interface.

During the runtime, RCM can receive calls from Orchestrator and AMOE, which retrieve the
information about the schemes and the metrics from the RCM. The RCM can also receive a call
from MARI which, in turn, has been called by the user to calculate a mapping of controls or a
mapping among controls and metrics. In this case, MARI retrieves the input information from
the RCM, and after processing it, returns the map to be stored in the RCM.

Figure 18. RCM sequence diagram

4.2.5 Orchestrator

Component
Name

Orchestrator

Main
functionalities

The component provides the following functionalities:

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 60 of 73

www.emerald-he.eu

• Orchestrator is the central component for connecting multiple
components together and to receive information, e.g.,
assessment results.

• Makes final certification decisions.
Sub-components
Description

• Currently no division in subcomponents planned

Main logical
Interfaces
offered

All APIs are available via REST and gRPC.

Interface name Description Interface technology

CLI A CLI is available Cobra18/Viper19

gRPC API The following endpoints are
available:

• ListAssessmentRes
ults lists stored
assessment results.

• StoreAssessmentR
esult stores a given
assessment result.

• StoreAssessmentR
esults stores a
stream of
assessment results.

• GetMetric returns
the metric for the
given metric ID

• ListMetrics lists all
metrics provided by
the given metric
catalogue

gRPC

Interaction with
other
components

• EmeraldUI: The EmeraldUI retrieves relevant information from
the Orchestrator (e.g., assessment results, certification
decisions, certification schemes).

• Evaluation

• The Evaluation component registers with the
Orchestrator (not yet implemented, to be discussed).

• The Evaluation component retrieves assessment results
from the Orchestrator for the evaluation.

• Assessment

• The Assessment component registers with the
Orchestrator (not yet implemented, to be discussed).

• The Assessment sends the assessment results to the
Orchestrator for storage.

• Repository of Controls and Metrics: The Orchestrator retrieves
metrics and controls.

• Evidence Store

• The Evidence Store component registers with the
Orchestrator (not yet implemented, to be discussed).

18 https://github.com/spf13/cobra
19 https://github.com/spf13/viper

http://www.emerald-he.eu/
https://github.com/spf13/cobra
https://github.com/spf13/viper

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 61 of 73

www.emerald-he.eu

Relevant
sequence
diagram/s

See Section 4.2.5.1

Requirements
Mapping

List of requirements covered by this component:

• ORCH.01: Final certificate decision

• ORCH.02: REST API Gateway for UI

• ORCH.03: Role Based Access Control

• ORCH.04: Manage Tools (such as Evidence Extractors) via API

• ORCH.05: Provide an API for audit workflow

Technology used Go20, gRPC21
Related KR KR4_MULTICERT

KR6_EMERALD UI/UX
WP and task WP3 – T3.1
License Apache-2.0
Partner Fraunhofer AISEC

4.2.5.1 Sequence diagram

Figure 19 shows the sequence diagram of the Orchestrator component. The Orchestrator is the
central component orchestrating the certification process and connecting multiple components
together of the EMERALD framework.

The Orchestrator accesses the RCM to retrieve relevant metrics and controls (as well as the
respective mapping provided by MARI).

The Orchestrator receives assessment results sent by the Assessment component which are then
stored in the internal database. In the same sense, the Evaluation component sends the
evaluation results to the Orchestrator, to get them stored in the internal database.

When asked from the EmeraldUI or any other component, the Orchestrator can also fetch the
stored data from the internal database and return it.

20 https://go.dev/
21 https://grpc.io/

http://www.emerald-he.eu/
https://go.dev/
https://grpc.io/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 62 of 73

www.emerald-he.eu

Figure 19. Orchestrator sequence diagram

4.2.6 Evidence Store

Component Name Evidence Store
Main
functionalities

The component provides the following functionalities:

• Stores and manages evidence of different resource types
received from various discovery components as well as
assessment results.

Sub-components
Description

Currently no division in subcomponents planned

Main logical
Interfaces offered

Interface name Description Interface technology

CLI A CLI is available Cobra22/Viper23

REST API/gRPC
API

The following endpoints
are available:

• GetEvidence for
receiving specific
evidence

• ListEvidences to list
multiple evidence

• StoreEvidence to
store one evidence

• StoreEvidences to
store multiple
evidence in a stream

All endpoints are
available via the REST
API and gRPC API

22 https://github.com/spf13/cobra
23 https://github.com/spf13/viper

http://www.emerald-he.eu/
https://github.com/spf13/cobra
https://github.com/spf13/viper

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 63 of 73

www.emerald-he.eu

Interaction with
other components

• Assessment: Forwards the evidence to the Assessment

• AI-SEC: Evidence Store receives evidence from AI-SEC

• Codyze: Evidence Store receives evidence from Codyze

• Clouditor-Discovery: Evidence Store receives evidence from
Clouditor-Discovery

• eknows: Evidence Store receives evidence from eknows

• AMOE: Evidence Store receives evidence from AMOE

• Orchestrator

• Fetches evidence from Evidence Store

• Registers Evidence Store component in the Orchestrator
(not yet implemented, to be discussed).

Relevant sequence
diagram/s

See section 4.2.6.1

Requirements
Mapping

List of requirements covered by this component:

• ESTORE.01: Storage of evidence as ontology entities in graph
database

• ESTORE.02: Allow Interaction with Third-Party Tools

Technology used Go24, gRPC (using protobuf)25, a specific database to implement the
knowledge graph (tbd)

Related KR KR1_EXTRACT
KR2_CERTGRAPH

WP and task WP3 – T3.1
License Apache-2.0
Partner Fraunhofer AISEC

4.2.6.1 Sequence diagram

Figure 20 shows the sequence diagram of the Evidence Store component. The Evidence Store
component is responsible for storing and managing evidence of different resource types and
collected from various sources in a graph database.

First thing the Evidence Store does is to register itself in the Orchestrator, so retrieves meta data
(e.g., the cloud services identification) to add this data to the incoming evidence.

Various evidence collectors (like the Clouditor-Discovery in the diagram) gather evidence from
different sources and send them to the Evidence Store.

When required, the Assessment component pulls the required evidence from the Evidence Store
for its assessment calculation.

24 https://go.dev/
25 https://grpc.io/

http://www.emerald-he.eu/
https://go.dev/
https://grpc.io/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 64 of 73

www.emerald-he.eu

Figure 20. Evidence Store sequence diagram

4.2.7 Assessment

Component
Name

Assessment

Main
functionalities

The component provides the following functionalities:

• Assesses evidence based on predefined metrics that are stored in
the Repository of Controls and Metrics.

Sub-
components
Description

Currently no division in subcomponents planned

Main logical
Interfaces
offered

Interface name Description Interface technology

CLI A CLI is available Cobra26/Viper27

REST API/ gRPC
API

The following endpoints
are available:

• AssessEvidence to
assess one evidence.

• AssessEvidences to
assess a stream of
evidence.

All endpoints are
available via the REST
API and gRPC API.

26 https://github.com/spf13/cobra
27 https://github.com/spf13/viper

http://www.emerald-he.eu/
https://github.com/spf13/cobra
https://github.com/spf13/viper

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 65 of 73

www.emerald-he.eu

Interaction
with other
components

• Evidence Store: The Assessment retrieves evidence from the
Evidence Store.

• Orchestrator:

• Registers the Assessment component in the Orchestrator
(not yet implemented, to be discussed).

• The Assessment sends the assessment results to the
Orchestrator for storage.

• The Assessment retrieves the metrics for the assessment
from the Orchestrator.

• Trustworthiness System: The Assessment component sends
evidence and assessment results to the Trustworthiness System.

Relevant
sequence
diagram/s

See Section 4.2.7.1

Requirements
Mapping

List of requirements covered by this component:

• ASSESS.01: Assessment based on evidence

• ASSESS.02: Assessment rules for 80% of the defined metrics

• ASSESS.03: Display cause of assessment result

Technology
used

Go28, gRPC (using protobuf)29, Rego (Open Policy Agent)30

Related KR KR4_MULTICERT
KR6_EMERALD UI/UX

WP and task WP3 – T3.4
License Apache-2.0
Partner Fraunhofer AISEC

4.2.7.1 Sequence diagram

Figure 21 shows the sequence diagram of the Assessment component. The Assessment
component is responsible for assessing evidence based on predefined metrics. The calculated
assessment results are eventually used by the Clouditor-Evaluation component to determine
compliance with the relevant controls.

At an initial registration phase, the Assessment component coordinates with the Orchestrator
to receive instructions.

The Assessment retrieves evidence from the Evidence Store to perform assessments. The result
of the assessment is sent to the Orchestrator for storage.

The Assessment interacts with the TWS to provide assessment results as well as the respective
evidence.

28 https://go.dev/
29 https://grpc.io/
30 https://www.openpolicyagent.org/docs/latest/policy-language/

http://www.emerald-he.eu/
https://go.dev/
https://grpc.io/
https://www.openpolicyagent.org/docs/latest/policy-language/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 66 of 73

www.emerald-he.eu

Figure 21. Assessment sequence diagram

4.2.8 Evaluation

Component
Name

Evaluation

Main
functionalities

The component provides the following functionalities:

• Aggregates assessment results assed by the Assessment component
and determines the overall compliance status for a given control.

• Evaluates the compliance of cloud services against controls and
requirements of security catalogues.

Sub-
components
Description

Currently no division in subcomponents planned

Main logical
Interfaces
offered

Interface name Description Interface technology

CLI A CLI is available Cobra31/Viper32

REST API/gRPC
API

The following endpoints are
available:

• StartEvaluation starts the
evaluation.

• ListEvaluationResults
lists stored evaluation
results.

All endpoints are
available via the REST
API and gRPC API.

31 https://github.com/spf13/cobra
32 https://github.com/spf13/viper

http://www.emerald-he.eu/
https://github.com/spf13/cobra
https://github.com/spf13/viper

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 67 of 73

www.emerald-he.eu

Interaction
with other
components

• Orchestrator

• Registers the Evaluation component in the Orchestrator (not
yet implemented).

• The Evaluation component retrieves assessment results
from the Orchestrator.

• Sends the evaluation results to the Orchestrator for storage.

• Fetches controls from the Orchestrator.

Relevant
sequence
diagram/s

See Section 4.2.8.1

Requirements
Mapping

List of requirements covered by this component:

• EVAL.01: Display cause of evaluation result

• EVAL.02: Evaluation based on assessment results

Technology
used

Go33, gRPC34

Related KR KR4_MULTICERT
KR6_EMERALD UI/UX

WP and task WP3 – T3.4
License Apache-2.0
Partner Fraunhofer AISEC

4.2.8.1 Sequence diagram

Figure 22 shows the sequence diagram of the Evaluation component. The Evaluation component
is responsible for aggregating and interpreting assessment results to determine overall
compliance status of cloud services for a given control of a security catalogue.

The Evaluation first registers itself into the Orchestrator.

The Evaluation component obtains assessment results from the Orchestrator, processes them
and determines the compliance status based on the mapping of metrics to controls of a security
catalogue. The evaluation result is sent back to the Orchestrator for storage.

33 https://go.dev/
34 https://grpc.io/

http://www.emerald-he.eu/
https://go.dev/
https://grpc.io/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 68 of 73

www.emerald-he.eu

Figure 22. Evaluation sequence diagram

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 69 of 73

www.emerald-he.eu

5 Conclusions

This document is dedicated to introducing the EMERALD architecture to the reader. An overview
of the system, the decomposition of EMERALD in 12 components, the information flow among
them and a detailed view of them have been provided. These components will be in the future
instantiated in the pilots defined in WP5. To complement the architecture, the general data
model of the EMERALD framework, defined in D1.1 [1], has been presented. A Glossary is also
included, with definition and examples of crucial terms.

Following a multiple-perspective process, the requirements for the EMERALD framework have
been designed. This document focuses on technical requirements, but we also included the
Business requirement list, developed in WP5, and the UX/UI requirements, developed in WP4,
for completion and analysis. A total of 44 functional requirements have been elicited, grouped
in the 12 components that form the framework.

These functional requirements are accompanied by 8 non-functional requirements, which are
mostly system constrains or properties more than related to a particular component, so no
effort has been spent in linking them to specific components. For each NFR, some hints on how
we plan to fulfil them have been presented.

An analysis of the requirements has been provided, where several matrices trace the coverage
provided by the requirements to validate the pilots, the Key Results (KRs) or the Key
Performance Indicators (KPIs). Also, the requirements prioritization and status at this V1 version
of the EMERALD components in M12 is analysed. As a result, we have demonstrated that most
of the Business requirements are covered by one or more technical requirements. That means
that the corresponding component design is aligned with the final user’s view. Finally, we have
provided a detailed view of the EMERALD framework, describing each component based on the
component cards, which included sequence diagram developed with PlantUML to show their
dynamic behaviour and interaction with other components.

The future version of this document (D1.4 [2]) will review these requirements, their status and
mappings, and could include new requirements as a result of the evolution of components, or
of task related to the technical and pilots’ validation activities.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 70 of 73

www.emerald-he.eu

6 References

[1] EMERALD Consortium, “D1.1 Data modelling and interaction mechanisms-v1,” 2024.

[2] EMERALD Consortium, “D1.4 EMERALD solution architecture-v2,” 2025.

[3] EMERALD Consortium, “D1.7 EMERALD Integrated solution–v1,” 2025.

[4] EMERALD Consortium, “D4.1 Results of the UI-UX requirements analysis and the work
processes–v1,” 2024.

[5] EMERALD Consortium, “D4.3 - User interaction and user experience,” 2024.

[6] European Comission, “Regulation (EU) 2019/881 of the European Parliament and of the
Council of 17 April 2019 on ENISA (the European Union Agency for Cybersecurity) and on
information and communications technology cybersecurity certification and repealing
Regulation (EU) No 52,” 10 2024. [Online]. Available: https://eur-
lex.europa.eu/eli/reg/2019/881/oj. [Accessed 10 2024].

[7] ISO, “ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary,”
https://www.iso.org/obp/ui#iso:std:iso:9000:ed-4:v1:en, 2015.

[8] “ISO/IEC 17788:2014 - Information technology — Cloud computing — Overview and
vocabulary,” 2014.

[9] National Institute of Standards and Technology (NIST), “SECURITY AND PRIVACY
CONTROLS FOR INFORMATION SYSTEMS AND ORGANIZATIONS,” 2020.

[10] ISO, “ISO/IEC 27000:2018 Information technology — Security techniques — Information
security management systems — Overview and vocabulary,” 2018.

[11] NIST - National Institute of Standards and Technology, “Key Concepts and Terms Used in
OSCAL,” 10 2024. [Online]. Available:
https://pages.nist.gov/OSCAL/resources/concepts/terminology/. [Accessed 10 2024].

[12] NIST - National Institute of Standards and Technology, “Cloud Computing Service Metrics
Description,” 24 April 2018. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-307.pdf. [Accessed 10
2024].

[13] EMERALD Consortium, “D2.2 - Source Evidence Extractor – v1,” 2024.

[14] EMERALD Consortium, “D2.4 - AMOE – v1,” 2024.

[15] EMERALD Consortium, “D2.6 - ML model certification – v1,” 2024.

[16] EMERALD Consortium, “D2.8 Runtime evidence extractor – v1,” 2024.

[17] EMERALD Consortium, “D3.1 Evidence assessment and Certification–Concepts-v1,” 2024.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 71 of 73

www.emerald-he.eu

[18] EMERALD Consortium, “D5.1 Pilot definition, set-up & validation plan,” 2024.

[19] EMERALD Consortium, “EMERALD - Annex 1 - Description of Action - GA 101120688,”
2022.

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 72 of 73

www.emerald-he.eu

APPENDIX A: Current status of requirements

Table 14 depicts the status of the technical requirements, ordered by component. The peach-
coloured lines highlight those requirements that are foreseen for M12.

The “Timeline” column states the month foreseen to complete the implementation, and the
associated Milestone (see the codes below) in an abbreviated form, where “C” stands for the
Components version, and “I” stands for Integration version. For example:

- C-v1 = MS2: Components V1 (M12)
- I-v3 = MS8: Integrated audit suite V3 (M34)

Table 14. Status of the Technical requirements

Req. ID Title Priority Timeline Status

AI-SEC.01 The extractor tool includes selected criteria MUST M12 (C-v1) 35%

AMOE.01 Upload PDF document MUST M12 (C-v1) 90%

AMOE.02
Provision of extracted evidence to EvidenceStore
(Orchestrator/Clouditor)

MUST M24 (C-V2) 50%

AMOE.03 Refine evidence extraction approach MUST M24 (C-V2) 0%

AMOE.04 Compare results from multiple documents SHOULD M12 (C-v1) 70%

AMOE.05 Select metrics per document SHOULD M24 (C-V2) 0%

AMOE.06
Classify document, select respective metrics
(optional)

MUST M34 (I-v3) 0%

AMOE.07 Metric states SHOULD M24 (C-V2) 0%

CLDISC.01
Discovery of security properties of infrastructure
components

MUST M30 (I-v2) 40%

CODYZE.01 Extraction of security features from source code MUST M30 (I-v2) 20%

EKNOWS.01 Integration into existing systems MUST M18 (I-v1) 30%

EKNOWS.02 Resilience while analysing erroneous code SHOULD M24 (C-V2) 70%

EKNOWS.03 Multi-language support MUST M24 (C-V2) 50%

EKNOWS.04 Support EMERALD evidence format MUST M18 (I-v1) 0%

EKNOWS.05 Static code analysis MUST M24 (C-V2) 60%

TWS.01 Provide integrity proof of evidence MUST M12 (C-v1) 75%

TWS.02 Provide integrity proof of assessment results MUST M12 (C-v1) 75%

TWS.03
Provide access through REST API or graphical
interface

MUST M24 (C-V2) 50%

TWS.04
Use a general purpose public-private Blockchain
network

MUST M24 (C-V2) 5%

MARI 1.0 AI-based MUST M30 (I-v2) 15%

MARI 2.0 Automatic association MUST M30 (I-v2) 15%

MARI 3.0 Performance evaluation MUST M30 (I-v2) 15%

MARI 4.0 Usage and visualization MUST M30 (I-v2) 15%

http://www.emerald-he.eu/

DRAFT
D1.3 – EMERALD solution architecture-v1 Version 1.0 – Final. Date: 31.10.2024

© EMERALD Consortium Contract No. GA 101120688 Page 73 of 73

www.emerald-he.eu

Req. ID Title Priority Timeline Status

MARI 5.0 Strategies MUST M30 (I-v2) 15%

RCM.01 Multi-schema support MUST M12 (C-v1) 90%

RCM.02 Accessible by the rest of components MUST M12 (C-v1) 100%

RCM.03 Include metrics for all schemas supported MUST M12 (C-v1) 30%

RCM04 Mapping of schemes SHOULD M30 (I-v2) 10%

RCM.05 Import/export of security schemes in OSCAL MUST M30 (I-v2) 40%

RCM.06 Import/export of security schemes in CSV format COULD M12 (C-v1) 60%

RCM.07 Support for personalized catalogues MUST M30 (I-v2) 0%

RCM.08 Support updating/versioning of schemes SHOULD M30 (I-v2) 10%

ORCH.01 Final certificate decision MUST M24 (C-v2) 0%

ORCH.02 REST API Gateway for UI MUST M12 (C-v1) 15%

ORCH.03 Role Based Access Control MUST M24 (C-v2) 25%

ORCH.04 Manage Tools (such as Evidence Extractors) via API MUST M18 (I-v1) 0%

ORCH.05 IssueORCH.05 Provide an API for audit workflow MUST M30 (I-v2) 0%

ESTORE.01 Storage of ontology entities in graph database MUST M18 (I-v1) 15%

ESTORE.02
Allow Interaction with Third-Party Evidence
Collectors

SHOULD M34 (I-v3) 15%

ASSESS.01 Assessment based on evidence MUST M30 (I-v2) 15%

ASSESS.02 Assessment rules for 80% of the defined metrics MUST M30 (I-v2) 15%

ASSESS.03 Display cause of assessment result COULD M30 (I-v2) 0%

EVAL.01 Display cause of failing evaluation result COULD M30 (I-v2) 0%

EVAL.02 Evaluation based on assessment results MUST M30 (I-v2) 15%

The list of Milestones of the EMERALD project are [19]:

• MS1: Project baselines and definition (M9)

• MS2: Components V1 (M12)

• MS3: Integrated audit suite V1 (M18)

• MS4: Pilots V1 (M20)

• MS5: Components V2 (M24)

• MS6: Integrated audit suite V2 (M30)

• MS7: Pilots V2 (M32)

• MS8: Integrated audit suite V3 (M34)

• MS9: Final evaluation report and impact analysis (M36)

http://www.emerald-he.eu/

	Terms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Overview of the EMERALD Framework
	2.1 Context diagram
	2.2 The EMERALD framework
	2.3 Glossary

	3 EMERALD Framework Requirements
	3.1 Methodology and Tools for requirements elicitation
	3.1.1 The process
	3.1.2 The tools
	3.1.2.1 Gitlab issues
	3.1.2.2 Component cards
	3.1.2.3 PlantUML diagrams

	3.2 Functional Requirements
	3.3 Non-Functional Requirements
	3.3.1 Other WP1 requirements
	3.3.2 Business driven requirements
	3.3.3 UI/UX requirements (usability)

	3.4 Analysis of Requirements
	3.4.1 Mapping of requirements to KRs
	3.4.2 Mapping of requirements to KPIs
	3.4.3 Mapping of requirements to Business Driven Requirements
	3.4.4 Prioritization and current status

	3.5 Requirements Summary Dashboard

	4 EMERALD Framework detailed view
	4.1 Data model
	4.2 Component description (components cards & sequence diagrams)
	4.2.1 Evidence Collectors
	4.2.1.1 AI-SEC
	4.2.1.1.1 Sequence diagram

	4.2.1.2 AMOE
	4.2.1.2.1 Sequence diagram

	4.2.1.3 Clouditor-Discovery
	4.2.1.3.1 Sequence diagram

	4.2.1.4 Codyze
	4.2.1.4.1 Sequence diagram

	4.2.1.5 eknows
	4.2.1.5.1 Sequence diagram

	4.2.2 TWS – Trustworthiness System
	4.2.2.1 Sequence diagram
	4.2.2.1.1 System recording
	4.2.2.1.2 System Verification

	4.2.3 MARI - Mapping Assistant for Regulations with Intelligence
	4.2.3.1 Sequence diagram

	4.2.4 RCM - Repository of Controls and Metrics
	4.2.4.1 Sequence diagram

	4.2.5 Orchestrator
	4.2.5.1 Sequence diagram

	4.2.6 Evidence Store
	4.2.6.1 Sequence diagram

	4.2.7 Assessment
	4.2.7.1 Sequence diagram

	4.2.8 Evaluation
	4.2.8.1 Sequence diagram

	5 Conclusions
	6 References
	APPENDIX A: Current status of requirements

