
DRAFT
Deliverable D1.2

Data Modelling and interaction mechanisms – v2

Editor(s): Franz Deimling

Responsible Partner: Fabasoft R&D GmbH

Status-Version: Final - v1.0

Date: 30.04.2025

Type: R

Distribution level (SEN, PU): PU

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 39

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: D1.2 - Data Modelling and interaction mechanisms – v2

Due Date of Delivery to the EC 30.04.2025

Workpackage responsible for the
Deliverable:

WP1 - Concept and methodology of EMERALD

Editor(s): Franz Deimling (FABA)

Contributor(s): CNR, FABA, FhG, SCCH, TECNALIA

Reviewer(s):
Cristina Regueiro (TECNALIA)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, WP5

Abstract: Final version of the overview of data models and
techniques used for creating and linking the data to
evidence (annotation, etc)

Keyword List: Data diagram, data model, component overview

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/

Disclaimer: Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 39

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 20.02.2025 First draft version FABA

v0.2 09.04.2025 Comments and suggestions received
by consortium partners

WP1, WP2 and WP3
partners

v0.3 16.04.2025 Figures and listings updated FABA, Tecnalia, FhG

v0.4 16.04.2025 QA Review TECNALIA

v0.5 22.04.2025 Addressed all comments received in
the Internal QA review and sent to
final review

FABA

v0.6 23.04.2025 Addressed recommendations from the
final review

FABA

v1.0 30.04.2025 Submitted to the European
Commission

TECNALIA

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 39

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 8

1.3 Updates from D1.1... 9

2 Data Model Overview .. 10

3 Component Data Models .. 12

3.1 Evidence Collector Data Models .. 14

3.1.1 AI-SEC ... 14

3.1.2 AMOE ... 15

3.1.3 Clouditor-Discovery ... 16

3.1.4 Codyze ... 18

3.1.5 eknows-e3 ... 19

3.2 Trustworthiness System (TWS) Data Model .. 21

3.3 Mapping Assistant for Regulations with Intelligence (MARI) Data Model 22

3.4 Repository of Controls and Metrics (RCM) Data Model .. 23

3.5 Orchestrator Data Model... 25

3.6 Evidence Store Data Model ... 27

3.7 Assessment Data Model .. 27

3.8 Evaluation Data Model .. 28

4 Interactive Documentation ... 30

4.1 PlantUML ... 30

4.2 Web Service ... 30

4.2.1 Implementation details ... 31

4.3 Data model versioning ... 32

5 Data Exchange and Formats .. 33

5.1 Interaction mechanisms between components .. 33

5.2 Sequence diagrams .. 35

6 Conclusions .. 37

7 References ... 38

APPENDIX: Release 1.4.3 of Architecture and Data Modelling ... 39

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 39

www.emerald-he.eu

 List of figures

FIGURE 1. EMERALD DATA DIAGRAM .. 11
FIGURE 2. OVERVIEW OF THE EMERALD COMPONENTS.. 13
FIGURE 3. OVERVIEW OF THE AI-SEC COMPONENT DATA MODEL .. 14
FIGURE 4. OVERVIEW OF THE AMOE COMPONENT DATA MODEL .. 16
FIGURE 5. OVERVIEW OF THE CLOUDITOR-DISCOVERY COMPONENT DATA MODEL 17
FIGURE 6. CODYZE COMPONENT OVERVIEW ... 19
FIGURE 7. OVERVIEW OF THE EKNOWS-E3 COMPONENT DATA MODEL .. 21
FIGURE 8. OVERVIEW OF THE TRUSTWORTHINESS SYSTEM COMPONENT DATA MODEL 22
FIGURE 9. OVERVIEW OF THE MARI COMPONENT DATA MODEL .. 23
FIGURE 10. OVERVIEW OF THE RCM COMPONENT DATA MODEL ... 25
FIGURE 11. OVERVIEW OF THE ORCHESTRATOR COMPONENT DATA MODEL .. 26
FIGURE 12. OVERVIEW OF THE EVIDENCE STORE COMPONENT DATA MODEL ... 27
FIGURE 13. OVERVIEW OF THE ASSESSMENT COMPONENT DATA MODEL ... 28
FIGURE 14. OVERVIEW OF THE EVALUATION COMPONENT DATA MODEL ... 29
FIGURE 15. INTERACTIVE SVG - HIGHLIGHT NEIGHBOURS ON CLICK .. 30
FIGURE 16. LANDING PAGE OF THE INTERACTIVE DOCUMENTATION .. 31

 List of listings

LISTING 1. EXAMPLE OF VIRTUAL MACHINE PROPERTIES... 18
LISTING 2. AMOE EXAMPLE EVIDENCE IN JSON ... 33
LISTING 3. CLOUDITOR EXAMPLE EVIDENCE IN JSON ... 34
LISTING 4. AN EUCS REQUIREMENT MAPPING IN OSCAL .. 35

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 39

www.emerald-he.eu

Terms and abbreviations

AI Artificial Intelligence

AIC4 Artificial Intelligence Cloud Service Compliance Criteria Catalogue

AI-SEC AI Security Evidence Collector

AMOE Assessment and Management of Organisational Evidence

API Application Programming Interface

AST Abstract Syntax Tree

BSI Bundesamt für Sicherheit in der Informationstechnik

CI/CD Continuous Integration / Continuous Delivery

CLI Command Line Interface

CSP Cloud Service Provider

DoA Description of Action

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GASTM Generic Abstract Syntax Tree

gRPC Google Remote Procedure Call

JSON JavaScript Object Notation

KPI Key Performance Indicator

MARI Mapping Assistant for Regulations with Intelligence

ML Machine Learning

NLP Natural Language Processing

OSCAL Open Security Controls Assessment Language

PDF Portable Document Format

PNG Portable Network Graphics

RCM Repository of Controls and Metrics

REST Representational State Transfer

SARIF Static Analysis Results Interchange Format

SVG Scalable Vector Graphics

TRL Technology Readiness Level

TWS Trustworthiness System

UML Unified Modelling Language

UUID Universally Unique Identifier

WP Work Package

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 39

www.emerald-he.eu

Executive Summary

This deliverable, the final version of the data modelling and interaction mechanisms, provides a
report on the data diagrams, design and documentation of the EMERALD framework and its
components. The goal of the corresponding task T1.1 in work package 1 is to coordinate the
different types of data shared between the components of WP2, WP3 and WP4. The deliverable
provides an overview of the data model, as well as the setup of the interactive documentation.
Furthermore, the data exchange and formats are described.

D1.2 lays the foundation of the data model – the underlying work of Task 1.1. The resulting
documentation serves as a common ground to develop the different components and their APIs.
It should offer a high-level overview of the components – displaying the flow of the data.
Technical details can be found in the overall data diagram and data format descriptions.
Additionally, an overview per component is provided, so as not to be overwhelmed by details,
and to be able to focus only on parts of the EMERALD framework.

The document is structured in four main parts: the data model, the component overview, the
interactive documentation and finally the data exchange and format description. It starts by
giving detailed insights into the data classes used in EMERALD. This is followed by an overview
of each component is provided, starting with the evidence collectors (WP2) and continuing with
the different components of WP3. In the interactive documentation section, the technical setup
of the documentation is described. Finally, plans for the interaction mechanisms are outlined.

This is the second and final version of the previous deliverable D1.1 [1]. The contents of this
deliverable have evolved depending on the different updates required by the development
process of the EMERALD components and the interaction mechanisms. The updates reflect
changes needed to address the requirements coming from the pilots (WP5), workflows (WP4)
and the technical work packages (WP2 and WP3). As this is the final deliverable for the task T1.1,
the descriptions and data models reflect the current status of the components and planned
extensions. The data model and interaction mechanisms will continue to be updated; however,
the expected changes are minor, and this final release can be considered stable.

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 39

www.emerald-he.eu

1 Introduction

This section explains the goal and purpose of the deliverable, its context and its structure.

1.1 About this deliverable

This deliverable is the final release of the task T1.1 “Data modelling and information sharing
mechanisms” of WP1 of the EMERALD project [2]. It shall provide an overview of the data model
that is used in the EMERALD framework. Furthermore, the deliverable provides an overview of
each component’s data and how it is linked to other components. The goal is to provide insights
of the current state of the data used in EMERALD and how it is organized.

The data model will be used by all the components in collaboration with WP2 and WP3, as well
as the EmeraldUI component that will be developed in WP4. The interaction mechanism
between the different software components will be described and the preferred data formats
to facilitate data access and sharing will be presented.

The task uses the existing data classes of the components and focuses on providing relevant
information to the different partners, unfamiliar to the different components. Different
abstraction layers are used to provide an overview and detailed insights. The diagrams have
been adjusted over the course of the project and have been adopted to the requirements of the
different components. In order not to lose track of any changes, dedicated processes (see
Section 4.3) have been set up to check this.

1.2 Document structure

The document is organized into four main sections:

• Data model

• Component overview

• Interactive documentation

• Data exchange and formats

The data model overview section, Section 2, depicts and describes the current state of the whole
data model used in EMERALD. It gives detailed insights into the inter-component relationships
of the EMERALD data.

In order to have a more abstract view and not get lost in the details, an overview of the
components is provided in Section 3. This section contains a subsection dedicated to each
EMERALD component.

Section 4 describes the deployment and core implementation of the interactive documentation
approach used to share the data model within the EMERALD project. There are three
subsections, starting with a section describing PlantUML and how it is used to create the
diagrams. This is followed by a description of the web service. Finally, the process on versioning
and updating the diagrams is described.

Section 5 describes the different formats used in the project and how the components
communicate. The deliverable is summarized in Section 6.

Finally, the current release of the interactive documentation can be found in the APPENDIX:

Release 1.4.3 of Architecture and Data Modelling .

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 39

www.emerald-he.eu

1.3 Updates from D1.1

This deliverable evolves from D1.1 [1], and with the ultimate goal of making the document self-
contained and easier to follow, part of the content comes from D.1.1 since it has not changed.
To simplify tracking progress and updates from the previous version (D1.1), Table 1 shows a
summary of the changes and additions to each section of the document.

Table 1. Overview of deliverable updates with respect to D1.1

Section Changes

1 This section is based on the previous deliverable D1.1 with the addition of this
section 1.3 – Updates from D1.1.

2 The diagram of the general data model overview was updated to the current
release and some more textual details regarding the arrows have been added.

3 The component data models have been updated according to the current
release. Also, the text has been adapted to describe the current data classes,
their properties and relations to other components.

4 The text has been extended with some details regarding the versioning of the
data model.

5 The evidence examples have been updated as well as the sequence diagram
section 5.2.

6 The conclusion has been updated.

7 The references have been updated.

Appendix The appendix was updated to contain the current release at the time of
writing this deliverable.

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 39

www.emerald-he.eu

2 Data Model Overview

This section describes the final version of the EMERALD data model. The model describes the
different data classes, as well as their connections within and between components. The goal is
to provide insights to developers and users of the EMERALD framework. Therefore, the data
diagram is presented in an interactive system1 that is explained in more detail in Section 4. There
are different abstraction layers, to allow for a “drill down” on the details.

Figure 1 shows the resulting data model for the whole EMERALD framework2. It depicts each
component in a separate box, whereas the background colour denotes the EMERALD work
package to which it is related. Evidence collection components (WP2) are coloured in orange,
and WP3 components are coloured in teal. Each component box contains the data classes that
are relevant for other developers and inter-component communication. Component specific
information can be found in the respective subsection of Section 3.

Please note that the Questionnaire is a subcomponent of the RCM and is therefore shown with
a dedicated box in Figure 1. However, as the Questionnaire data model is quite large, it is not
shown in Figure 1 but in the RCM component overview (see Figure 10).

The inter component class connections reflect the data flow if no explicit UML notation is
followed. Some of the classes displayed are abstractions of the internal implementation and
serve as a means to better understand and document the data structure for developers and
users without the need of deep insight into the source code of the different applications. It shall
help developers to track the data flow over different components alongside the API definitions
that the different components offer and report in their respective documentation. As the
diagram can be quite hard to track in the figure (many lines), it is recommended to use the
deployed web service or release, as attached in the APPENDIX: Release 1.4.3 of Architecture and
Data Modelling.

1 https://models.emerald.digital.tecnalia.dev/
2 Please note that an enlarged view of the EMERALD data model is available in APPENDIX: Release 1.4.3
of Architecture and Data Modelling.

http://www.emerald-he.eu/
https://models.emerald.digital.tecnalia.dev/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 39

www.emerald-he.eu

Figure 1. EMERALD data diagram

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 39

www.emerald-he.eu

3 Component Data Models

This section describes each EMERALD component from a data-oriented point of view. It covers
the different evidence extraction tools, where the evidence is stored and assessed, and the tools
that provide and assist with the management of the security schemes and metrics. The different
views have been integrated in the interactive documentation (see APPENDIX: Release 1.4.3 of
Architecture and Data Modelling) and can be reached via links.

Figure 2 depicts an abstracted view of the main EMERALD components and serves as a starting
point for users as well as developers. The diagram shows the general data flow between all the
components. The direction of the arrows indicates the direction the data flows. As also explained
in the legend, a dashed line indicates that a component at the end of the arrow pulls data from
the component at the other end, while a full line indicates that a component actively pushes
data to another component using its API. The components are coloured according to the
respective work package they are related to. The colour – work package associations can be
found in the legend (see Figure 2).

Please note that the legend has been omitted in the figures of the overview of the component
data models to save space, as the information is redundant.

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 39

www.emerald-he.eu

Figure 2. Overview of the EMERALD Components

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 39

www.emerald-he.eu

3.1 Evidence Collector Data Models

All the evidence collector components developed in WP2 collect different forms of data and
extract evidence. The results are then shared in the EMERALD framework. This section describes
relevant data classes used internally by them and how they relate to other components. The
main connections of these components are to the Evidence Store and the Repository of
Controls and Metrics.

Furthermore, the subsections below describe the main techniques for transforming raw
evidence data into the EMERALD evidence class objects. Part of the data classes of the
components (e.g., Clouditor-Discovery) are based on the CertGraphOntology model (the
EMERALD Graph Ontology), which is described in D2.2 [3]. Please note that the
CertGraphOntology is not a component, but a central ontology for storing evidence in a graph-
based format.

3.1.1 AI-SEC

AI-SEC is an evidence collection tool that extracts various information from ML models. The data
model of the tool currently consists of a single main class, AI-SECEvidence, which represents the
extracted evidence (see Figure 3). Evidence results and closely related information are also
stored in the AI-SECEvidence class (result). This class also contains a unique identifier (id), given
resources, such as data and model (sourceFilename), and the criteria used for extracting
evidence (criteriaId).

AI-SEC employs various measurements to extract evidence from ML models. By providing AI-
SEC with a set of data and a trained model, the tool can extract evidence and information about
different properties of the model. The output results (evidence and information) can be a string,
a vector or a matrix, depending on the measurement used.

Measurement methods are chosen based on the Criteria Catalogue for AI Cloud Services – AIC43,
such as adversarial robustness or explainability of the model. A detailed description of the
annotation plan and process have been reported in D2.6 “ML model certification–v1” (M12) [4]
and will receive updates in the deliverable D2.7 “ML model certification–v2” (M24).

Figure 3. Overview of the AI-SEC component data model

3 https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-
Empfehlungen/Kuenstliche-Intelligenz/AIC4/aic4_node.html

http://www.emerald-he.eu/
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kuenstliche-Intelligenz/AIC4/aic4_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Kuenstliche-Intelligenz/AIC4/aic4_node.html

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 39

www.emerald-he.eu

3.1.2 AMOE

The AMOE – Assessment and Management of Organisational Evidence – component extracts
evidence from policy PDF documents. The component stores the uploaded files, as well as
relevant metadata related to the document and metrics. There are four data classes in the data
model and one enumeration relevant to external users e.g. via API (see Figure 4):
AmoePolicyFile, AmoeEvidence, AmoeComplianceResult, AmoeResult and AmoeEvidenceState.
AmoePolicyFile serves as an internal representation of the uploaded file, which can be linked to
a Target of Evaluation via its id, while AmoeEvidence is the internal representation of the
extracted data and is created for a set of Security Metrics during the extraction process. The
AmoeEvidence class contains an AmoeResult representing the answer, score and position of the
extracted result in the text. The AmoeComplianceResult class is used to represent the AMOE
internal assessment result including complianceStatus, complianceComment and once it has
been submitted also the evidenceStoreId (of the Evidence). The enumeration
AmoeEvidenceState is the representation of possible states the AmoeEvidence can undergo.

The data is stored in a MongoDB4 and can be retrieved through the AMOE API endpoints. The
internal data classes of AMOE have been adapted in the past few months, according to the
requirements elicited for the EmeraldUI (detailed in D4.2 [5]) and further development of
AMOE. Except for some renaming and property adjustments, the data model for AMOE is
expected not to change throughout the future development in the EMERALD project.

AMOE is using an NLP (Natural Language Processing) based approach to extract evidence. It
utilizes pre-trained models to select text of the policy documents that are relevant for audits.
The models used at the moment of writing are specialized on different aspects, such as question
answering or computing text representations (embeddings) or text classification. The extracted
text passages are then stored in AmoeEvidence and AmoeResult. The relevant information
stored in AmoeEvidence and AmoeComplianceResult will be transformed into an Evidence class
object and will be forwarded to the Evidence Store component (see Section 3.6). Details on the
approach of the AMOE component and its related Task 2.3 have been reported in the deliverable
D2.4 “AMOE–v1” (M12) [6] and will receive an update in the deliverable D2.5 “AMOE–v2” (M24).

To ensure high quality output from AMOE, it is necessary to associate the text samples of the
policy documents with the Security Metrics. Therefore, AmoeEvidence is directly related to the
SecurityMetric class of the Repository of Controls and Metrics (see full data model in Figure 1,
AMOE data model in Figure 4, and RCM data model in Figure 10). The plans on annotation and
the detailed description of the process will be conducted in the Task 2.3 and reported in the
previously stated deliverable (D2.5).

Furthermore, AmoeEvidence and AmoeComplianceResult are related to the Orchestrator (Cloud
Service) and the Evidence Store (AssessmentResult, Evidence), and AmoeFile is related to the
Orchestrator (Target of Evaluation).

Finally, the information from AMOE can be accessed via API and used via the EmeraldUI.

4 https://www.mongodb.com/

http://www.emerald-he.eu/
https://www.mongodb.com/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 39

www.emerald-he.eu

Figure 4. Overview of the AMOE component data model

3.1.3 Clouditor-Discovery

The Clouditor-Discovery component is an evidence gathering tool which extracts Cloud
configurations for different Cloud resources (e.g., Virtual Machine, Object Storage, Network
Interface) from several Cloud providers (e.g., Azure) via API calls.

The retrieved cloud configuration information is stored in an internal Resource class

object that utilizes properties from the EMERALD Graph Ontology. While the Graph

Ontology is described in D2.1 [7], the properties can be found within the ontology. An
example of a Resource object of a Virtual Machine can be found in Listing 1.

Besides the Resource class object, the Clouditor-Discovery stores the gathered information in
the ClouditorDiscoveryEvidence class object (see Figure 5), which is the same class object as the
Evidence provided by the Evidence Store component. Evidence objects are stored in the
Evidence Store component, a description of the Evidence can be found in Section 3.6.

The link from the Orchestrator to the targetOfEvaluationId property in the
ClouditorDiscoveryEvidence class refers to the Target of Evaluation defined in the Orchestrator
component (see Section 3.5).

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 39

www.emerald-he.eu

Details on the approach of the Clouditor-Discovery component and its related Task 2.5 have
been reported in deliverable D2.8 “Runtime evidence extractor–v1” (M12) [8] and will be
updated in Deliverable D2.9 “Runtime evidence extractor–v2” (M24).

Figure 5. Overview of the Clouditor-Discovery component data model

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 39

www.emerald-he.eu

Listing 1. Example of Virtual Machine properties

3.1.4 Codyze

The Codyze component is a static source code analysis tool which analyses source code of
applications comprising Cloud services and assesses security-relevant implementation details.
The analysis report presents implementation details that meet or respectively violate specified
security requirements. As part of a CI/CD pipeline, Codyze acts as a quality and compliance gate
allowing only the delivery of applications that meet security requirements and preventing it
otherwise. Each update to the application’s source code or new release can trigger an execution
of the CI/CD pipeline and thereby Codyze. In addition, manual or scheduled assessments are
possible.

Codyze is developed in Kotlin5 and uses a graph-based representation of source code utilizing
the concept of a code property graph. The resulting representation is largely programming
language agnostic. Thus, it facilitates the implementation of generic, reusable source code

5 https://en.wikipedia.org/wiki/Kotlin_(programming_language)

message VirtualMachine {

 option (resource_type_names) = "VirtualMachine";

 option (resource_type_names) = "Compute";

 option (resource_type_names) = "CloudResource";

 option (resource_type_names) = "Resource";

 google.protobuf.Timestamp creation_time = 2132;

 string id = 15888 [(buf.validate.field).required = true];

 bool internet_accessible_endpoint = 11229;

 map<string, string> labels = 12634;

 string name = 5434 [(buf.validate.field).required = true];

 // The raw field contains the raw information that is used to

fill in the fields of the ontology.

 string raw = 17236;

 ActivityLogging activity_logging = 17610;

 AutomaticUpdates automatic_updates = 7698;

 repeated string block_storage_ids = 14852;

 BootLogging boot_logging = 4303;

 EncryptionInUse encryption_in_use = 5839;

 GeoLocation geo_location = 17337;

 MalwareProtection malware_protection = 5352;

 repeated string network_interface_ids = 150;

OSLogging os_logging = 14872;

 repeated Redundancy redundancies = 11599;

 RemoteAttestation remote_attestation = 16051;

 optional string parent_id = 7061;

 ResourceLogging resource_logging = 17205;

 UsageStatistics usage_statistics = 4834;

 }

http://www.emerald-he.eu/
https://en.wikipedia.org/wiki/Kotlin_(programming_language)

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 39

www.emerald-he.eu

analysis techniques. Currently, Codyze supports the programming languages C, C++, Java, Go
and Python.

Within EMERALD, Codyze interacts with the Orchestrator to orchestrate its analysis, and reports
its findings as evidence to the Evidence Store (see Figure 6). Thereby, Codyze generates an
analysis report in SARIF6 (CodyzeSarif). This report contains raw evidence from Codyze’s analysis,
which is persisted to the Evidence Store to facilitate further analysis externally to Codyze.
Moreover, Codyze processes the findings in the SARIF report into evidence for the EMERALD
framework. Each finding is converted into a CodyzeEvidence that identifies the analysed Target
of Evaluation (targetOfEvaluationId), specifies the analysed resource (resource), links it to the
underlying SARIF report (sarifId), classifies the finding according to the EMERALD ontology
(ontologyRef) and summarizes the result (result).

In addition, Codyze will submit hashes of its evidence to the TWS (cf. component data model of
the TWS in Section 3.2). The submitted hashes provide additional proof that evidence collected
by Codyze and submitted to the Evidence Store are the same and have not been tampered with.

Details on the approach of the Codyze component and its related Task 2.2 have been reported
in the deliverable D2.2 “Source Evidence Extractor–v1” (M12) [3] and will be updated in the
deliverable D2.3 “Source Evidence Extractor–v2” (M24).

Figure 6. Codyze component overview

3.1.5 eknows-e3

The eknows-e3 component – based on a platform for multi-language software analysis and
documentation generation – extracts evidence from source code files. The source code files are
collected from the Cloud Service environment at certain points in time. A set of predefined
triggers will be available (e.g., once a week/month/etc., or upon changes) to configure the points
in time according to the respective use case. eknows-e3 analyses the collected files and extracts
metadata related to the sources (e.g., from code repositories) and metrics.

eknows-e3 uses static code analysis to extract evidence. The underlying Java-based software
platform provides a modular, extensible set of software components for (i) source code parsing
using language-specific frontends (currently more than 16 programming languages, including

6 Static Analysis Results Interchange Format (SARIF), https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-
v2.1.0.html

http://www.emerald-he.eu/
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 39

www.emerald-he.eu

Java and Python) (extraction), (ii) transformation of parsed source code into a generic abstract
syntax tree (GASTM), (iii) structural and language-independent analysis of security-related
information, and (iv) reporting of analysis results for security metrics. The extracted and
analysed raw evidence is then forwarded to the Evidence Store component.

At the moment of writing, eknows-e3 logically comprises two main data classes (see Figure 7):
EknowsAnalysisResult and EknowsEvidence. Note that these internal data classes of eknows-e3
are not 1:1 implemented as physical classes and might change in the next few months, according
to the requirements defined for the EmeraldUI in D4.2 [5] and further needs of the pilot
partners.

EknowsAnalysisResult serves as an internal representation of the result of analysing a source
code file. It is based on the compilation unit, i.e. the generated abstract syntax tree (AST) model
of the parsed source code retrieved by eknows core library. The class is identified by a unique
identifier for the raw evidence (rawId). It contains additional (optional) attributes obtained from
the compilation unit and further specialized analysis according to security metrics. These
attributes denote the name of the file (fileName), the location (usually a source code repository)
from where to collect the file (filePath), the date of its last modification (modificationDate), the
line of code where the evidence was found (lineOfCode), the relevant part of the AST for further
explanation (relevantAST), and the respective security metric (metricId).

EknowsEvidence is the internal representation of the found evidence in the source code file for
a security metric during the extraction process. Based on the analysis result obtained, an
evidence object is built according to the defined EMERALD evidence format, which is sent to the
Evidence Store. It is identified by a unique identifier (id) and stores the analysis result as raw
evidence (rawId). SARIF is used as format for the raw evidence, because it is a well-established
format and is also used by Codyze. The class further contains closely related attributes, such as
the time of the extraction (timestamp), the corresponding Target Of Evaluation
(targetOfEvaluationId), the toolId, the version of the analyser for better traceability in the event
of incorrect evidence (analyzerVersion), and the key findings of the analysis represented in
ontology term (resource).

EknowsEvidence is related to the Evidence Store. Please note that an authorized connection
(OAuth) is currently necessary via a Clouditor instance to be able to transmit evidence to the
Evidence Store.

eknows-e3 can be configured and started via CLI (Command Line Interface) and set up via the
upcoming EmeraldUI.

Details on the approach of the eknows-e3 component and its related Task 2.2 have been
reported in deliverable D2.2 “Source Evidence Extractor–v1” (M12) and will be updated in
deliverable D2.3 “Source Evidence Extractor–v2” (M24).

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 39

www.emerald-he.eu

Figure 7. Overview of the eknows-e3 component data model

3.2 Trustworthiness System (TWS) Data Model

The TWS component securely stores the information and associated metadata of evidence and
assessment results on the Blockchain to be able to guarantee its integrity and transparency
through the EmeraldUI.

Due to the use of Blockchain, sensitive information such as evidence and assessment results are
not stored and just a summary of them is recorded on the Blockchain through identifiers and
hashes. In fact, in the case of assessment results, two different hashes are stored: the
assessment result itself and the compliance comments. The evidence and assessment result
themselves are kept in a local storage - Evidence Store and Assessment components
respectively.

In addition, TWS also records metadata information to provide some context. In the case of
evidence, they are usually related to specific Target of Evaluation (targetOfEvaluationId) and the
cloud resources to which they refer (resourceId). In the case of an Assessment Result, the
requirement to which it refers (requirementId), and the associated evidence identifiers
considered in the assessment (evidenceIds) are also stored. Finally, for both evidence and
assessment results, recording information about the timestamp when they were created
(timestamp) is also useful.

Figure 8 summarises the current data model for evidence (TrustworthyEvidence) and
assessment results (TrustworthyAssessmentResult) to be recorded on the Blockchain-based
TWS. It also shows the interactions with other components: i) with the Assessment component,
which provides information to be recorded in the TWS, and from where the TWS retrieves the
actual Evidence and Assessment Results to validate their integrity; ii) with the evidence
collectors as they can optionally record evidence proofs of integrity from the source (in
particular, Codyze will be considered as an example), and iii) with the EmeraldUI, which provides
a graphical interface for users to automatically validate the integrity status of the Evidence and
Assessment Results.

Details on the approach of the TWS component and its related Task 3.5 have been reported in
the deliverable D3.2 “Evidence assessment and Certification–Concepts-v2” [9] (M18).

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 39

www.emerald-he.eu

Figure 8. Overview of the Trustworthiness System component data model

3.3 Mapping Assistant for Regulations with Intelligence (MARI) Data
Model

MARI – Mapping Assistant for Regulations with Intelligence - is a component that uses
transformer-based tools to automatically associate:

• A security control and one, or more, security metric(s)

• Two security controls from two different certification schemes.

For the association control-metric(s), MARI takes as input the textual description of a security
control in natural language, the textual description of a list of metrics, again in natural language,
and as a result returns the list of metrics associated to that control, in descending order of
relevance. To do this, the textual descriptions of the metrics and controls are transformed into
feature vectors by pre-trained models.

For the association control-control, MARI can support a variety of certification schemes and
enables the automatic associations between controls from these different schemes.

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 39

www.emerald-he.eu

MARI interacts with RCM, fetching control and metric data from it, then generating both
control-metric(s) and control-control associations using transformer-based models. These
associations are computed based on the similarity between embeddings derived from the
natural language descriptions of the controls and metrics. With the introduction of a new version
of the mapping API and the addition of a similarity threshold attribute, only associations with
high similarity scores are returned to RCM.

Figure 9 shows the second version of the MARI data model, based on the RCM data model. The
RCM data classes SecurityMetric and SecurityControl are taken as input to produce two new data
classes (Control2ControlAssociation and Metrics2ControlAssociation). These represent the
associations generated by MARI’s processing. Details on the approach of MARI component and
its related Task 3.3 have been reported in D3.2 [9].

Figure 9. Overview of the MARI component data model

3.4 Repository of Controls and Metrics (RCM) Data Model

The Repository of Controls and Metrics (RCM) provides a central point in EMERALD framework
where the certification schemes are stored and managed. The repository can contain different
schemes and includes a complete information of each scheme, with the corresponding
categorization.

The data model of the RCM has been adapted from the first version, that was EUCS-centered
[10]. In this second version, the BSI C57 and AIC48 schemes have also been incorporated to the
RCM. Each schema has its own structure, but all share a common ground: they consist in a
catalogue of controls (also called criteria), grouped into several areas or objectives. Main
changes are related to the SecurityControl class, that is now the basic of the
SecurityControlFramework. The SecurityRequirement, a particular class to map the EUCS
structure, remains only internal to the RCM component and is mainly used in the EUCS
Questionnaire.

7https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalo
gue/2020/C5_2020.pdf?__blob=publicationFile&v=3
8https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-
Compliance-Criteria-Catalogue_AIC4.pdf?__blob=publicationFile&v=4

http://www.emerald-he.eu/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalogue/2020/C5_2020.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalogue/2020/C5_2020.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-Compliance-Criteria-Catalogue_AIC4.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-Compliance-Criteria-Catalogue_AIC4.pdf?__blob=publicationFile&v=4

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 39

www.emerald-he.eu

Figure 10 shows the resulting data model. The principal data classes implemented in the RCM
are SecurityControlFramework, SecurityCategory and SecurityControl that reflect the
organization of a general framework. Along with these, some other auxiliary entities are
implemented, such as SimilarControls and ControlMetricMap, that support the mapping among
controls of different schemes and the mapping of metrics to controls, and
ImplementationGuidelines, that helps the user with the implementation of controls. RCM also
incorporates the definition of the SecurityMetric class used in EMERALD to define what to
measure to assess the collected evidence.

 The RCM classes have interactions with other EMERALD components as follows:

• SecurityControlFramework, SecurityControl and SecurityMetric are related with the
Orchestrator, which internally manages the schemes.

• SecurityMetric is also related with the AMOE and the Assessment components.

• SecurityMetric and SecurityControl are also shared with the MARI component.

RCM calls the MARI component to generate control-metric(s) and control-control mappings.
The result is stored in the RCM, where it is accessible to the rest of components. The last version
of the mapping API includes a similarity “threshold” attribute, so that only associations with
higher similarity scores are returned to RCM. This avoids the return of a list with all the possible
similar items, which is the standard operating mode of the tool. The “statusMari” and
“statusUser” attributes have been introduced in each mapped item to differentiate and
maintain controlled the original mapping returned by MARI and the changes done by the user
to it, respectively.

Another functionality offered by the RCM is a Questionnaire to provide users the possibility to
perform a self-assessment to check compliance with the EUCS scheme. The Questionnaire-
related data classes have been slightly modified since the previous version by removing some
redundant links and changing some names to better reflect the underlying data which are
enclosed in a box in the diagram (see Figure 10). These data classes are as follows: UserAnswer,
QuestionnaireAssuranceLevel, Question, QuestionAnswer, UserAnswerNonConformities, and
jhiUser. All these entities are devoted to (i) Implement several questions per requirement, (ii)
manage the responses given; (iii) calculate the results for this specific user, and (iv) offer the
degree of compliance with the EUCS scheme regarding the selected assurance level.

Finally, the EmeraldUI component is also related with the data entities used in the RCM to
provide the final user with a graphical view of the schemes and all the associated information.

Details on the approach of the RCM component and its related Task 3.2 have been reported in
D3.2 [9].

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 39

www.emerald-he.eu

Figure 10. Overview of the RCM component data model

3.5 Orchestrator Data Model

The Orchestrator is the central management and orchestration component in EMERALD. Its
main purpose is to hold all dynamic information about the current audit process, such as the
Target of Evaluation, Assessment Results, and the final Certificate state (see Figure 11).
Furthermore, it fetches static data from the RCM, such as the available schemes and its
associated metrics. For performance reasons this data (SecurityControlFramework,
SecurityControlCategory, SecurityControl and SecurityMetric) is cached in the Orchestrator. The
most important dynamic data classes are:

• Target of Evaluation, which holds the logical representation of a single service, which
aims to be certified.

• Audit Scope, which takes an existing targetOfEvaluationId and combines it with one
dedicated security catalogue to produce a Certificate.

• Certificate, which is the data class representing different states and is related to the
EvaluationResults.

• Control, which is the neutral representation of either a control, requirement or objective
(this definition of Control is similar to the term defined in OSCAL9). Since every
SecurityControlFramework/security scheme uses different names, the Orchestrator
normalizes them in the Control data class. In addition, each Control can have sub-
controls, which allows to include different SecurityControlFrameworks in EMERALD.

Details on the approach of the Orchestrator component and its related Task 3.1 have been
reported in D3.2 “Evidence assessment and Certification – Concepts – v2” [9].

9 https://pages.nist.gov/OSCAL/learn/concepts/terminology/#control

http://www.emerald-he.eu/
https://pages.nist.gov/OSCAL/learn/concepts/terminology/#control

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 39

www.emerald-he.eu

Figure 11. Overview of the Orchestrator component data model

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 39

www.emerald-he.eu

3.6 Evidence Store Data Model

The Evidence Store is the central component to store evidence from the evidence collector
components, which send the generated evidence directly to the Evidence Store. The main data
class is Evidence, which holds the necessary information regarding the collected evidence (see
Figure 12) and whose important fields are the following:

• A unique identifier (id) for each evidence. It needs to be a UUID

• timestamp describing when the evidence was created

• targetOfEvaluationId of the Target of Evaluation the evidence belongs to

• toolId is the ID of the evidence collector tool that created the evidence (such as Codyze,
eknows-e3, Clouditor-Discovery, …)

• resource contains the resource properties of the discovered resource. It is described
according to the terms of the EMERALD Graph Ontology in D2.10 [11].

The evidence is sent to the Assessment component and can be retrieved via the Orchestrator
API.

Details on the approach of the Evidence Store component and its related Task 3.1 is reported in
D3.2 “Evidence assessment and Certification–Concepts-v2” [9].

Figure 12. Overview of the Evidence Store component data model

3.7 Assessment Data Model

The Assessment component assesses the evidence stored in the Evidence Store by using the
metric definitions from the RCM. The needed metrics are retrieved from the Orchestrator and
the evidence are sent directly from the Evidence Store to the Assessment. The important data
classes are the following:

• Metric contains the metadata and a link to the corresponding MetricImplementation

• MetricImplementation contains the implementation used by the assessment with the
specific code and the code language

• MetricConfiguration contains the target value, and the operator used in the assessment
and can be specified separately for each Target of Evaluation

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 39

www.emerald-he.eu

• AssessmentResult contains the result of the assessment, including the used evidenceId,
metricId and metricConfiguration.

The AssessmentResults are sent to the Trustworthiness System and can be retrieved via the API
endpoints of the Orchestrator. Figure 13 depicts the diagram for the Assessment data model.

Details on the approach of the Assessment component and its related Task 3.4 is reported in
D3.2 “Evidence assessment and Certification–Concepts-v2” [9].

Figure 13. Overview of the Assessment component data model

3.8 Evaluation Data Model

The main purpose of the Evaluation component is to map the measurements of individual
metrics (i.e., assessment results) and combine them according to the mapping of a metric to a
Control. This is defined as an EvaluationResult (see Figure 14), the most important fields of which
are:

• Its id, which is a UUID to make it unique

• The combination of the Target of Evaluation (through its targetOfEvaluationId) and a
control (through its controlled and associated catalogId identifiers)

• A timestamp

• A status, which can either be compliant, not compliant or waiting for more data

• Optionally, a second validUntil field, which describes the validity of this result. This is
mainly used for evaluation results that are created manually (e.g., for controls which
cannot be automatically measured).

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 39

www.emerald-he.eu

Usually, one or more metrics define the compliance state of a control. Currently, all the
assessment results need to be compliant for the evaluation result to be compliant. This might
change in the future if more sophisticated logical operations are needed. For example, it could
be possible that either one or another metric is sufficient to demonstrate compliance to the
control.

Details on the approach of the Evaluation component and its related Task 3.4 is reported in D3.2
“Evidence assessment and Certification–Concepts-v2” [9].

Figure 14. Overview of the Evaluation component data model

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 39

www.emerald-he.eu

4 Interactive Documentation

This section describes the web-based documentation approach used to share the data model
within the EMERALD project. The main technologies used are PlantUML10, Nginx11 web service
and Gitlab12. The main objective is to have a centralized documentation that can be viewed from
any device, without the need to install any tools.

4.1 PlantUML

To allow for easy text-based creation of the data model, the PlantUML tool was chosen. This
tool supports a wide range of diagrams – some of which have included in our documentation
e.g., class diagrams, sequence diagrams, component diagrams. As the diagrams are based on
structured text, very similar to common programming languages, the implementation is straight
forward and can therefore be easily adapted into code or vice versa.

PlantUML allows to render the diagrams in different output formats. The most commonly used
in the project are PNG and SVG. The latter is important for the web-service – the option
‘!pragma svginteractive true’ switches the diagrams from static boxes to dynamically
highlighted on hover or click. As it might be hard to track connected classes in a huge class
diagram, a class can be clicked or hovered and all related classes are highlighted as well.

Figure 15 depicts an example: the Evaluation component was clicked, and the direct neighbour
Orchestrator is highlighted, whereas the other links and components are faded.

Figure 15. Interactive SVG - highlight neighbours on click

Furthermore, PlantUML allows to set variables and themes to use the EMERALD colour scheme
on all diagrams. This is convenient as the colour scheme can be imported for each diagram and
does not need to be set manually for each element. The different diagram files can be included
in other files, which reduces redundant information, and the main classes of each
subcomponent need to be defined in a single file. The names of the components are set as
variables including links to the overview diagrams – so no manual linking is required.

4.2 Web Service

To make the diagrams more accessible, a simple html page was created that includes some basic
JavaScript functionalities to switch the diagrams displayed. The landing page
(https://models.emerald.digital.tecnalia.dev/) shows an overview of the components (see
Figure 16). Users can click component titles to switch to the respective overview diagram.

10 https://plantuml.com/
11 https://nginx.org/en/
12 https://en.wikipedia.org/wiki/GitLab

http://www.emerald-he.eu/
https://models.emerald.digital.tecnalia.dev/
https://plantuml.com/
https://nginx.org/en/
https://en.wikipedia.org/wiki/GitLab

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 39

www.emerald-he.eu

Furthermore, a navigation bar at the top of the page allows quick access to the component
overview (“Components” menu option) or the data diagram page (“Data diagram” menu
option). The idea is to start with a generic overview and then drill down to see the details of a
component. Although the data diagram is quite large, you can focus on a single component by
clicking on it.

Figure 16. Landing page of the interactive documentation

4.2.1 Implementation details

Once the diagrams are rendered, the interactive documentation can be deployed locally without
any need of a web service by simply opening the index.html file. However, for ease of access -
and to always have access to the newest release - we are using Dockerfiles13 to generate a nginx
based image that can be deployed on the EMERALD Kubernetes cluster.

The structure of the web service is as follows:

./index.html

./imgs/logo.svg

./out/*_data.svg

./out/*_component.svg

./out/*_Sequence_Diagram.svg

The index.html file contains the basic structure and scripts to load the diagrams. The EMERALD
logo is stored in /imgs. The rendered diagrams are stored in /out and are loaded on demand.
This implementation is portable to any device that supports a modern web browser by simply
copying the files. In the Nginx web service, the files are located in /usr/share/nginx/html.

13 https://docs.docker.com/reference/dockerfile/

http://www.emerald-he.eu/
https://docs.docker.com/reference/dockerfile/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 39

www.emerald-he.eu

4.3 Data model versioning

As the PlantUML based diagrams contain text/code, the files can be used in versioning systems
such as git14. This allows for different organisational processes, which are not possible in
common online tools with graphical support (e.g., draw.io15 – although it allows versioning,
there are no processes to keep different versions of the diagrams and proposed changes, as it is
possible using text-based diagrams and git + GitLab16). Different versions of the diagrams can be
stored in commits, and merge requests can be created to deal with changes to the diagrams.

The process to add changes to the data model has been defined as follows: major changes are
completed in a separate branch – when finished, a merge request should be created in the
EMERALD GitLab and the changes will be reviewed to check for inconsistencies and breaks to
the interactive, web-service-based deployment. After the review, the new version will be
merged, which triggers the build pipeline, and a new release will be deployed to the EMERALD
Kubernetes cluster. New release numbering is automated using the CI/CD strategy from
EMERALD as reported in other WP1 deliverables such as D1.7 [12]. The changelog and updated
release (if done automatically) is based on the commit messages. The current release numbering
has been included in the web page and can be viewed in the top right corner. Once merged, the
latest release version of the diagrams will be available to all developers and can be retrieved at
https://models.emerald.digital.tecnalia.dev/. If there are any problems, or additional diagrams
are needed, Gitlab’s issue functionality can be used to document, communicate and coordinate
the required changes.

14 https://git-scm.com/
15 https://www.draw.io
16 https://gitlab.com/

http://www.emerald-he.eu/
https://models.emerald.digital.tecnalia.dev/
https://git-scm.com/
https://www.draw.io/
https://gitlab.com/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 39

www.emerald-he.eu

5 Data Exchange and Formats

This section provides a short overview of the planned data exchange approach, as well as the
formats used. Although all EMERALD components use different data types, they all
communicate in a standardized way and format, which speeds up development as components
do not need to build special data connectors for the different tools.

5.1 Interaction mechanisms between components

The interaction between the components will be implemented using REST17 – representational
state transfer. Each component is using and/or serving REST-APIs that are documented in the
OpenAPI18 specification files. This helps developers to share the different endpoints and allows
to generate code for client interfaces. Some components may also offer gRPC connections
(Remote Procedure Call framework by Google) to share data between closely related
components such as Evidence Store and Assessment. The most common format for REST-API
will be JSON19, as it allows for easy access of attribute-value pairs and arrays.

Listing 2 shows the JSON example for a piece of evidence that is sent from AMOE to the Evidence
Store. Similarly, Listing 3 shows a more extensive example for data represented in JSON and how
it is used by some EMERALD components, such as Clouditor-Discovery.

17 https://en.wikipedia.org/wiki/REST
18 https://en.wikipedia.org/wiki/OpenAPI_Specification
19 https://en.wikipedia.org/wiki/JSON

{

 "id": "b11a1b4b-4cff-4135-afbb-f6e30364d881",

 "timestamp": "2024-06-26T18:23:45.123456",

 "target_of_evaluation_id": "3f1c2e4c-8bd5-45d1-a6a3-0f9a9a8e4d35",

 "tool_id": "amoe",

 "resource": {

 "policyDocument": {

 "id": "165483",

 "name": "165483",

 "raw": "password must contain more than 15 characters",

 "amoe_result": true

 }

 }

}

Listing 2. AMOE example evidence in JSON

http://www.emerald-he.eu/
https://en.wikipedia.org/wiki/REST
https://en.wikipedia.org/wiki/OpenAPI_Specification
https://en.wikipedia.org/wiki/JSON

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 39

www.emerald-he.eu

Some components will offer data import / export functionality, in particular the Repository of
Controls and Metrics will allow import of security schemes using the OSCAL20 format. The API
description and more details on the format will be described in the future deliverable D3.4
“Evidence assessment and Certification–Implementation-v2” (M24). The OSCAL format allows
different file types and data formats such as YAML21 and JSON. Listing 4 shows a tentative
example of the mapping of an EUCS Requirement in OSCAL. It can be seen how the parts of the
Control (ops-02) are specified using the OSCAL elements ”id”, “title”, ”properties”, and with
”parts” and ”prose”; the Requirements are implemented with “parts” within the upper “parts”

20 https://pages.nist.gov/OSCAL/
21 https://en.wikipedia.org/wiki/YAML

{

 "id": "11100000-1000-0001-0000-000000011111",

 "timestamp": "2020-05-22T20:32:05Z",

 "targetOfEvaluationId": "00000000-0000-0000-0000-000000000000",

 "toolId": "Clouditor Evidence Collection",

 "resource": {

 "objectStorageService": {

 "creationTime": "2023-07-09T10:35:18.246911100Z",

 "id":

"/subscriptions/XXXXX/resourcegroups/democlouditorhappy/providers/micro

soft.storage/storageaccounts/democlouditordiagnostics",

 "labels": {

 "owner": "clouditor"

 },

 "name": "democlouditordiagnostics",

 "geoLocation": {

 "region": "westeurope"

 },

 "httpEndpoint": {

 "url":

"https://democlouditordiagnostics.[file,blob].core.windows.net/",

 "transportEncryption": {

 "enabled": true,

 "enforced": true,

 "protocol": "TLS",

 "protocolVersion": 1.2,

 "cipherSuites": []

 }

 },

 "parentId":

"/subscriptions/XXXXX/resourcegroups/democlouditorhappy"

 }

 }

}

Listing 3. Clouditor example evidence in JSON

http://www.emerald-he.eu/
https://pages.nist.gov/OSCAL/
https://en.wikipedia.org/wiki/YAML

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 39

www.emerald-he.eu

of Control. The Requirement ID (OPS-02.3) is specified with “properties”, and the requirement
itself with “prose”.

5.2 Sequence diagrams

To illustrate the interactions between the components, sequence diagrams have been created
and extended as part of the work of Task 1.1. Additional documentation will be provided which
can be included in the interactive PlantUML diagrams. The sequence diagrams for the rest of the
components have been added to the interactive documentation and have been reported in the

"controls": [

 {

 "id": "ops-02",

 "title": "CAPACITY MANAGEMENT - MONITORING",

 "properties": [

 {

 "name": "label",

 "value": "OPS-02"

 }

],

 "parts": [

 {

 "id": "ops_02_obj",

 "name": "control-objective",

 "prose": "The capacities of critical resources such as

personnel and IT resources are monitored."

 },

 {

 "id": "ops-02_smt",

 "name": "statement",

 "parts": [

 {

 "id": "ops-02_smt.3",

 "name": "item",

 "properties": [

 {

 "name": "label",

 "value": "OPS-02.3"

 }

],

 "prose": "The provisioning and de-provisioning of

cloud services shall be automatically monitored to guarantee fulfilment of

OPS-02.1"

 }

]

 }

]

 }

]

Listing 4. An EUCS Requirement mapping in OSCAL

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 39

www.emerald-he.eu

deliverable D1.3 “EMERALD solution architecture-v1” (M12) [13] and will receive updates in the
deliverable D1.4 “EMERALD solution architecture-v2” (M24).

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 39

www.emerald-he.eu

6 Conclusions

This document provides an overview of the overall EMERALD data model, as well as a more
detailed view of the component data models. The data model overview depicts all the classes of
the different EMERALD components. Furthermore, it shows, how the classes are linked together
and the direction of the inter component data exchange is reflected.

The data model is presented in a web service, to allow interactive investigation of the different
diagrams. The diagrams are based on text instructions using PlantUML and then rendered in SVG
files. This allows the diagrams to be versioned and the various functionalities of the EMERALD
GitLab repository can be used to manage and coordinate the updates. The basic idea of this
interactive documentation is to start with an abstract overview (landing page) and then drill
down to the different components of interest. The different classes and components of the
diagrams can be clicked/hovered to navigate and highlight direct connections.

Finally, this deliverable describes the main data format that will be used for data exchange
between EMERALD components and external sources – JSON. To provide more insight, an
example for AMOE evidence and another for Clouditor-Discovery evidence have been provided.
The Repository of Controls and Metrics (RCM) will provide import/export functionality of
security schemes in OSCAL format – for which a JSON example was also provided.

The data diagrams will be updated according to the needs and changes of the different
components. These changes will be subject to the described processes in this deliverable, shared
with the consortium in different version releases, and deployed in the EMERALD Kubernetes
infrastructure. Although, this is the last deliverable for this task in EMERALD, future updates to
the data model (e.g. error corrections) will be collected and described in the EMERALD
development git environment and the new releases of the interactive web service will continue
to be deployed alongside the EMERALD components.

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 39

www.emerald-he.eu

7 References

[1] EMERALD Consortium, “D1.1 Data modelling and interaction mechanisms - v1,” 2024.

[2] EMERALD Consortium, “EMERALD - Annex 1 - Description of Action - GA 101120688,”
2022.

[3] EMERALD Consortium, “D2.2 Source Evidence Extractor – v1: Evidence extraction from
source code that can be integrated with the certification graph,” 2024.

[4] EMERALD Consortium, “D2.6 ML model certification – v1: Security and privacy preserving
evidence that can be integrated with the certification graph,” 2024.

[5] EMERALD Consortium, “D4.2 Results of the UI-UX requirements analysis and the work
processes–v2,” 2025.

[6] EMERALD Consortium, “D2.4 AMOE – v1: Evidence extraction from policy documents that
can be integrated with the certification graph,” 2024.

[7] EMERALD Consortium, “D2.1 Graph Ontology for Evidence Storage,” 2024.

[8] EMERALD Consortium, “D2.8 Runtime Evidence Extractor - v1,” 2024.

[9] EMERALD Consortium, “D3.2 Evidence assessment and Certification–Concepts-v2,” 2025.

[10] ENISA, “EUCS - Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed July
2024].

[11] EMERALD Consortium, “D2.10 Certification Graph -v1,” 2025.

[12] EMERALD Consortium, “D1.7 EMERALD integrated solution - v1,” 2025.

[13] EMERALD Consortium, “D1.3 EMERALD solution architecture - v1,” 2024.

http://www.emerald-he.eu/

DRAFT
D1.2 – Data Modelling and interaction mechanisms – v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 39 of 39

www.emerald-he.eu

APPENDIX: Release 1.4.3 of Architecture and Data Modelling

In order to allow the readers of this document to consult the documentation and data model
themselves, the current version of the files have been archived in a zip file. The contents are
images of the different data models, as well as a webpage to aid in navigation. The 1.4.3 release

version of the interactive documentation is available here: D1.2 Appendix Release 1-4-3 of
Architecture and Data Modelling

To open the interactive documentation locally, you need to extract the zip file. Then navigate to
the “architecture_and_data_model” folder and open the index.html file in a common web
browser.

http://www.emerald-he.eu/
https://at.cloud.fabasoft.com/folio/public/2yfpu89exute13kgajzcftwec3
https://at.cloud.fabasoft.com/folio/public/2yfpu89exute13kgajzcftwec3

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure
	1.3 Updates from D1.1

	2 Data Model Overview
	3 Component Data Models
	3.1 Evidence Collector Data Models
	3.1.1 AI-SEC
	3.1.2 AMOE
	3.1.3 Clouditor-Discovery
	3.1.4 Codyze
	3.1.5 eknows-e3

	3.2 Trustworthiness System (TWS) Data Model
	3.3 Mapping Assistant for Regulations with Intelligence (MARI) Data Model
	3.4 Repository of Controls and Metrics (RCM) Data Model
	3.5 Orchestrator Data Model
	3.6 Evidence Store Data Model
	3.7 Assessment Data Model
	3.8 Evaluation Data Model

	4 Interactive Documentation
	4.1 PlantUML
	4.2 Web Service
	4.2.1 Implementation details

	4.3 Data model versioning

	5 Data Exchange and Formats
	5.1 Interaction mechanisms between components
	5.2 Sequence diagrams

	6 Conclusions
	7 References
	APPENDIX: Release 1.4.3 of Architecture and Data Modelling

