
DRAFT

Deliverable D1.6

DevOps methodology and CI/CD strategy for EMERALD-
v2

Editor(s): Gorka Benguria, Iñaki Etxaniz (TECNALIA)

Responsible Partner: TECNALIA Research and Innovation

Status-Version: Final - v1.0

Date: 30.04.2025

Type: R

Distribution level (SEN, PU): PU

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 54

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable:
D1.6 DevOps methodology and CI/CD strategy for
EMERALD-v2

Due Date of Delivery to the EC 30.04.2025

Work package responsible for the
Deliverable:

WP1 - Concept and methodology of EMERALD

Editor(s): Gorka Benguria Elguezabal, Iñaki Etxaniz (TECNALIA)

Contributor(s): Gorka Benguria Elguezabal, Iñaki Etxaniz (TECNALIA)

Reviewer(s):
Franz Deimling (FABA)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, WP5

Abstract: Final version of the description of the DevOps
methodology and CI/CD strategy that provides details on
the integration process followed to create and deploy
the integrated EMERALD CaaS (Compliance as a Service)
Framework. It also provides details on the strategies
applied at integration and deployment level to help on
the achievement of the EMERALD goal.

Keyword List: DevOps, CI/CD, Integration, Container, Environment,
Releases

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 54

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 15.04.2025 First draft version TECNALIA

v0.2 17.04.2025 Typos corrected and style polished.
Sent for internal QA review

TECNALIA

v0.3 17.04.2025 QA Review Franz Deimling (FABA)

v0.4 26.04.2025 Addressed all comments received in
the Internal QA review

TECNALIA

v0.5 28.04.2025 Final review TECNALIA

v1.0 30.04.2025 Submitted to the European
Commission

TECNALIA

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 54

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction ... 10

1.1 About this deliverable .. 10

1.2 Document Structure .. 11

1.3 Updates from D1.5... 11

2 DevOps Methodology .. 14

2.1 Context ... 14

2.2 Goals .. 14

2.3 Processes ... 15

2.3.1 Plan .. 16

2.3.2 Code ... 17

2.3.3 Build ... 18

2.3.4 Test .. 18

2.3.5 Release... 19

2.3.6 Deploy .. 20

2.3.7 Operate .. 20

2.3.8 Monitor .. 21

2.4 Lifecycle ... 21

3 CI/CD Strategy .. 24

3.1 CI Strategy .. 24

3.1.1 Container-based .. 24

3.1.2 Environments with IaC .. 25

3.1.3 Integration guidelines .. 26

3.1.4 CI/CD Components .. 26

3.1.5 Component-based Kustomize ... 29

3.1.6 Manual deployment support ... 30

3.1.7 Rancher for debugging support ... 32

3.1.8 Local environment for testing ... 32

3.1.9 Progressive Verification ... 32

3.1.10 Automation .. 33

3.2 CD Strategy .. 33

3.2.1 Releases ... 34

3.2.2 Public Assets Release ... 34

3.2.3 Keycloak configuration .. 35

3.2.4 Demo pilot ... 35

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 54

www.emerald-he.eu

3.2.5 Documentation .. 35

3.2.6 Environments with IaC .. 36

3.2.7 Automation .. 36

4 Conclusions .. 37

5 References.. 38

APPENDIX A: Project Risks and impact in the DevOps Methodology ... 40

APPENDIX B: Project Milestones from the DoA .. 42

APPENDIX C: Integration files .. 43

C.1 – Renovate mechanism ... 43

C.2 – Semantic Versioning Configuration .. 44

C.3 – Kustomize approach ... 45

C.4 – Docker compose approach ... 48

C.5 – CI/CD Examples ... 50

List of figures

FIGURE 1. DEVOPS CYCLE ... 16
FIGURE 2. LIST OF ISSUES RELATED TO CONCEPT & METHODOLOGY IN EMERALD 22
FIGURE 3. A MERGE REQUEST RELATED TO CONCEPT & METHODOLOGY IN EMERALD 22
FIGURE 4. A MERGE REQUEST MECHANISM TO PRODUCE A NEW RELEASE IN EMERALD............................. 34
FIGURE 5. RENOVATE SCHEDULE .. 44
FIGURE 6. KUSTOMIZE MAIN STRUCTURE OF THE INTEGRATED CAAS FRAMEWORK 45
FIGURE 7. KUSTOMIZE COMPONENT ... 47
FIGURE 8. DOCKER COMPOSE FRAMEWORK ... 49
FIGURE 9. LOCAL ENVIRONMENT SERVICES ... 50
FIGURE 10. RCM CHANGE .. 50
FIGURE 11. DOCKER CI/CD EXAMPLE ... 51
FIGURE 12. DOCKER CI/CD EXAMPLE PIPELINES .. 52
FIGURE 13. DOCKER CI/CD STAGES DETAIL .. 52
FIGURE 14. SEMANTIC RELEASE CI/CD EXAMPLE .. 53
FIGURE 15. SEMANTIC RELEASE CI/CD STAGES DETAIL ... 54

List of tables

TABLE 1. OVERVIEW OF DELIVERABLE UPDATES WITH RESPECT TO D1.5 .. 12
TABLE 2. RISK AND MITIGATION LIST ... 40

List of listings

LISTING 1. CI/CD FOR THE RCM COMPONENT ... 29
LISTING 2. CI/CD FOR SIDE-SERVICE ... 29
LISTING 3. EXAMPLE COMMANDS TO MANUALLY REDEPLOY A COMPONENT .. 31
LISTING 4. RENOVATE PIPELINE (.GITLAB-CI.YML) .. 43
LISTING 5. CONTENT OF THE FILE RENOVATE.JSON ... 44

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 54

www.emerald-he.eu

LISTING 6. CONTENT OF THE FILE .RELEASERC.YAML ... 45
LISTING 7. KUSTOMIZE INTEGRATE OVERLAY ... 46
LISTING 8. KUSTOMIZE BASE .. 46
LISTING 9. KUSTOMIZE RCM COMPONENT .. 48
LISTING 10. CI/CD FOR DOCKER GENERATION .. 51
LISTING 11. CI/CD FOR SEMANTIC RELEASE GENERATION ... 54

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 54

www.emerald-he.eu

Terms and abbreviations

AI Artificial Intelligence

AI-SEC AI Security Evidence Collector

AMOE Assessment and Management of Organizational Evidence

API Application Programming Interface

CaaS Compliance-as-a-Service1

CI/CD Continuous Integration / Continuous Deployment

CLI Command Line Interface

CMMI Capability Maturity Model Integration

DevOps Development and Operation

DIND Docker in Docker

DoA Description of the Action

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

HTTP Hypertext Transfer Protocol

IaC Infrastructure as Code

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITIL Information Technology Infrastructure Library

K8s Kubernetes

K8so Kubernetes on Openstack

K8sv Kubernetes on Vsphere

MARI Mapping Assistant for Regulations with Intelligence

OSCAL Open Security Controls Assessment Language

RCM Repository of Controls and Metrics

TWS Trustworthiness System

UI/UX User Interface / User Experience

WP Work Package

1 Please note that in previous deliverables and in the DoA, the term Certification-as-a-Service was used to
stand for CaaS. Compliance has now been introduced to clarify that EMERALD can be used to assess both
normative models and internal organizational models.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 54

www.emerald-he.eu

Executive Summary

The main objective of EMERALD project is to provide a framework that enables continuous
compliance and certification, and agile lean re-certification to consume services that adhere to
a defined level of security and trust in a uniform way across heterogeneous environments made
of combinations of various resources.

In order to achieve the development of the CaaS (Compliance-as-a-Service)2 Framework, the
EMERALD project aggregates specialized components from different teams and integrates them
into a single framework that is validated in different pilots. This brings some challenges that
should be managed: on the provider side, the components are developed by different teams
with different schedules and different development practices; on the consumer side, the CaaS
Framework will be consumed as a service or as an on-premises configuration.

This document is the final version of the DevOps (Development and Operations) Methodology
and the CI/CD (Continuous Integration/Continuous Deployment) strategies. The previous
version, presented at M6, focused mainly on stablishing the corresponding processes and tools
to achieve the first integrated version of the CaaS Framework (M18). This final version is the
result of the experience and lessons learnt during the first half of the project and focuses on the
upcoming releases of the CaaS Framework (M30 and M34) and the deployment of the CaaS
Framework in the pilots. The main changes that have been introduced relate to the following
aspects:

• Integration of new versions of the CaaS Framework: Supporting, on the one hand, the
agile integration of components developed by the different teams and, on the other
hand, the validation of the upcoming versions of the CaaS Framework before being
deployed in the pilots with a certain degree of confidence.

• Delivery of new versions to the Pilots: Supporting the deployment of the validated
versions of the CaaS Framework in the pilots and introducing mechanisms to reduce the
undesirable effects of deployment in their environments (such as data loss, the need to
reconfigure the environment or service downtime, to name a few).

• Getting and processing feedback: Supporting the collection of feedback from the pilots
and the development teams, and the processing of that feedback to improve the CaaS
Framework.

The target audience of the document are the EMERALD participants in charge of coordinating
the development and operation activities. In addition, the document also aims to provide
information to other partners and stakeholders in understanding how the EMERALD CaaS
Framework is managed from a DevOps perspective.

The document also includes annexes that provide additional information about the project,
which can help the reader grasp the project context. In particular, they include the risks and
milestones defined in the Description of Action (DoA) and details on the integration files that
are not accessible in the public area of the GitLab repository of the EMERALD project.

This document is the second and final version of the development and operation coordination
approach that has been applied during the first half of the project. Future related work will
involve applying the techniques defined here to develop the v2 (M30) and v3 (M34) releases of
the CaaS Framework, as well as to the deployments in the pilots. Some changes to the

2 Please note that in previous deliverables and in the DoA, the term Certification-as-a-Service was used to
stand for CaaS. Compliance has now been introduced to clarify that EMERALD can be used to assess both
normative models and internal organizational models.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 54

www.emerald-he.eu

methodology are likely to be introduced, but the fundamental processes are already defined
and in operation.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 54

www.emerald-he.eu

1 Introduction

This section introduces the context of the project, the aim and audience of the content and the
document structure.

This deliverable is the result of task T1.3 Continuous integration and optimization and details the
line of actions to be followed in the project to achieve a smooth and quick transition among the
developers’ work and the final result, i.e. the EMERALD CaaS Framework deployed in the pilots.

This document, D1.6, is the successor of D1.5 [1], which presented the first version of the
development and operation coordination approach and was applied as a baseline during the
first stage of the project. D1.6 follows the same structure and preserves part of content from
the previous version of the deliverable, in order to keep the document self-contained and easier
to follow. In this sense, section 1.3 presents the main modifications of this document compared
to its first version.

1.1 About this deliverable

From the project mission:

“EMERALD’s mission is to provide a user-friendly framework to help stakeholders in the
cybersecurity field efficiently manage certifications, enhancing the security and effectiveness of
cloud service usage. The proposed EMERALD environment will be the foundation for defining a
new service for assisting the certification process that we named Certification-as-a-Service
(CaaS).” [2]

To contribute to that mission, this deliverable describes the technical coordination approach
that is followed in the EMERALD project to continuously integrate, update, and validate that
framework, here in after referred as Compliance-as-a-Service2 (CaaS) Framework. The elements
of the approach have been defined considering the context of the EMERALD project and the
envisaged CaaS Framework, which are detailed in following sections.

In this document we describe the two main elements of the technical coordination approach:
the DevOps Methodology, and the CI/CD Strategy:

• The DevOps Methodology in EMERALD focuses on how the development, integration
and validation teams collaborate to build and evolve the CaaS Framework through its
planned releases to achieve the evolving requirements considering the resources and
constrains of the EMERALD project.

• The CI/CD Strategy describes the technical approaches to be applied to continuously
integrate and deploy the evolving components and how these integrated versions are
deployed and validated in the target consumers. The continuous integration (CI) deals
with the integration of the different components that build up the CaaS Framework and
the verification of the integrated version, so that it is ready for its deployment. The
continuous deployment (CD) deals with the deployment of the integrated version in the
production environment and the required pilot environments for their validation.
Within the continuous deployment we also establish the mechanisms to manage the
feedback into new or extended requirements.

The target audience of this document is:

• DevOps engineers of the EMERALD project. For them, this document provides a guide
for managing the integration of the technical outcomes of the development teams, as
well as for the deployment of the integrated versions for their validation.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 54

www.emerald-he.eu

• Developers aiming to integrate or update the components of the CaaS Framework. For
them, this document provides a guide to understand how to integrate their components
in the CaaS Framework, and how to send their new versions for validation in order to
generate new integrated versions of the CaaS Framework.

• CaaS Framework users. For them, this document provides a guide to understand how to
manage the feedback from their usage so that it can be used to adjust the CaaS
Framework to fulfil their needs. And, in case they want to deploy the CaaS Framework
in their own environments, it provides them with the necessary information on how to
deploy the CaaS Framework and how to manage the updates.

• Finally, this document is also targeted to people that want to understand how the CaaS
Framework was developed. For them, it also provides some resources that are useful to
extend or customize the CaaS to their needs.

This document is the final version of the DevOps methodology and CD/CI strategy for EMERALD.
It is likely that some changes will be made to the methodology and the CI/CD Strategy, but the
fundamental processes are already defined and in operation.

1.2 Document Structure

The document is organized in two main sections:

• DevOps Methodology

• CI/CD Strategy

The DevOps Methodology section, Section 2, explains the foundations for the approach that are
used to coordinate the development and operation in order to continuously integrate, validate
and manage feedback to improve the CaaS Framework, considering the needs of the EMERALD
pilots and the contributions of the development teams.

The CI/CD Strategy section, Section 3, is split in two sections: CI Strategy and CD Strategy. The CI
Strategy section describes the principles and practices used for the integration of the different
components of the CaaS Framework prior to its disposal to the pilots. The CD Strategy section
describes the approach and tools used to provide the integrated versions of the CaaS Framework
to the pilots for their validation, as well as the mechanisms to collect that validation feedback
for the continuous improvement of the upcoming CaaS Framework versions.

Finally, Section 4 presents the main conclusions of the document.

In addition, the document includes three annexes (APPENDIX A: Project Risks and impact in the
DevOps Methodology, APPENDIX B: Project Milestones from the DoA and APPENDIX C:
Integration files), which support the understanding of the document, as well as the technical
implementation details of some specific assets of the DevOps infrastructure used.

1.3 Updates from D1.5

This deliverable evolves from D1.5 [1], and with the ultimate goal of making the document self-
contained and easier to follow, some of the content comes from D1.5, as it is unchanged, and
some is new. To simplify tracking progress and updates from the previous version (D1.5), Table
1 shows a brief summary of changes and additions to each section of the document.

The first version of the deliverable presented in M6 was mainly focused on the generation of the
first integrated version of the CaaS Framework (M18). Since M6 many activities have been
performed in the project:

• 33 development cycles have been carried out (one every two weeks, excluding holidays)

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 54

www.emerald-he.eu

• 17 repositories have been created under the DevOps group in the EMERALD GitLab
repository.

• 34 issues have been created in the DevOps group in the EMERALD GitLab repository.

• 66 merge requests have been created in the DevOps group in the EMERALD GitLab
repository.

• Over 400 commits have been made in the DevOps group in the EMERALD GitLab
repository.

• 7 patch releases of the CaaS Framework have been created.

• 24 patch releases of the Side Services have been created.

This final version is focused on the deployment of the CaaS Framework in the pilots, and its
controlled evolution. In that sense, this document integrates the lessons learnt during the first
half of the project and includes strategies to effectively support the pilots in the usage of the
CaaS Framework while gathering feedback from them.

Table 1. Overview of deliverable updates with respect to D1.5

Section Changes

2. DevOps
Methodology

The processes of the Methodology are described in more detail with the lessons
learn.

• The plan process introduces the bi-weekly periodic meetings that have been
carried out since the beginning of the project.

• The code process describes the support areas that have been provided to
the development teams.

• The test process describes the integration tests and the priorities that have
been set for their implementation.

• The release process describes the major and the patch releases that have
been applied.

• The deploy process describes the two types of deployment that are
supported: SaaS and on-premises.

• The operate process describes the feedback gathering and processing that
is performed in the project.

3. CI/CD
Strategy

Minor updates on the previous strategies have been made and new strategies
have been added.

• Integration guidelines: Guidelines that have been provided to the
development teams to help them in the integration of their components.

• CI/CD Components: CI/CD components used in the project.
• Manual deployment support: Manual deployment support provided to the

development teams.
• Rancher for debugging support: Rancher tool used to provide fast

debugging support to the development teams.
• Local environment for testing: Local environment used to provide local

testing support to the development and DevOps teams.
• Public Assets Release: Strategies used to release the public assets of the

project.
• Keycloak configuration: Identity and access management approach used in

the project.
• Demo Pilot: Approach to support pilots to be applied in the project.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 54

www.emerald-he.eu

Section Changes

APPENDIX C:
Integration
files

New annex that provides low level details on some key processes applied
during the integration activities: Renovate mechanisms, Semantic Versioning
configuration, Kustomize approach, and Docker Compose approach. We also
include some CI/CD samples as reference as they are placed in the internal
GitLab area.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 54

www.emerald-he.eu

2 DevOps Methodology

This section describes the process, and the lifecycle applied in EMERALD to coordinate the
development and operation teams during the project. The section also presents the challenges
and risks faced by the EMERALD DevOps Methodology. From these challenges, we define some
top-level goals for the DevOps Methodology to be applied. Then, we present the process to be
applied, whose main tasks are specified. Finally, the software lifecycle is presented, that
describes how the process is applied over time.

The description contains much information in common with D1.5 [1] with the final aim of
providing a self-contained section that facilitates the reader's understanding.

2.1 Context

EMERALD presents some challenges and risks that should be managed during the CaaS
Framework development. The Description of Action (DoA) of EMERALD [3] includes some risks
that are relevant for the definition of the DevOps Methodology (see APPENDIX A: Project Risks
and impact in the DevOps Methodology for more details and an extended list):

• Users experience low usability.

• EMERALD components are not able to be fully integrated.

• The implementation does not cover all use cases.

• Underestimation of effort needed to complete activities.

• Technology changes require significant redesign of the EMERALD architecture.

• A partner fails to meet the obligations and becomes non-performing or even defaulting.

Apart from these risks enumerated in the DoA, there are several challenges to be considered
during the elaboration of the DevOps Methodology:

• We are aiming a TRL7 [4] “System/process prototype demonstration in an operational
environment” (integrated pilot system level).

• We have different components with different requirement sets, different teams, and
different agendas.

• We have fixed milestones (see APPENDIX B: Project Milestones from the DoA) at project
level that should be achieved.

• The CaaS Framework must be deployed as a Service. That implies to integrate and test
all the components in a production grade service environment.

• Some pilots, due to internal policies, may require deploying the framework for internal
validation.

2.2 Goals

Based on the risks and challenges established, the DevOps Methodology we are aiming for
should have the following characteristics:

• Release-based: We need a release-based methodology because the DoA states an
iterative approach for the CaaS Framework, where at least three releases will be
provided. Therefore, a minimum of three versions are expected, with some
intermediate versions that can be motivated by other project milestones.

• Manage the feedback: The project aims a TRL7 outcome. That implies that at the end
of the project, apart for being finished, the system must be validated in real life
environments. The project has several validation cycles planned, and the methodology
should keep track of the issues raised during these activities to make sure they are
managed.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 54

www.emerald-he.eu

• Manage the aimed component set. To keep track of the integration of all the
components, it is necessary to have a clear idea on how the components are integrated.
Most of the components will be integrated in Kubernetes, but some of them (e.g., the
evidence collectors) will run individually sending the information to the Framework.

• Keep requirement traceability. We use the requirements as the basis for the validation
of the different components of the CaaS Framework, as well as the framework as a
whole. Therefore, there should be a traceability of the DevOps activities with the set of
requirements. The requirements are managed in GitLab and are reported in D1.3 [5]
(M12), and D1.4 [6] that will be submitted in M24.

• Manage the environments. The EMERALD project is required to manage several
environments during the DevOps activities. The project envisions at least two
environments: integration and production, but additional ones could also be managed
on demand. The Integration environment is focused on providing debugging support for
the developers and verification means for the project, whereas the production
environment is focused in providing a validation platform for the project. Additional
environments can be created at any point by the pilots themselves or by the DevOps
team, based on specific needs, and lasting for a variable timeframe.

• Integrate as soon as possible. The update requests from the diverse development
teams should be promoted into the integration environment as soon as possible. This
helps mitigate some of the risks identified, such as effort underestimation and partner
withdrawal.

2.3 Processes

In order to select the set of processes to be used to support coordination between development
and pilots, we have a wide range of standards and other kinds of references to choose from.
From the standards side, there is no normative DevOps standard that can be used as a basis. The
most approximate elements that can be found are standards for software development and for
service operation maturity evaluation, such as:

• CMMI v1.3 [7], where we can find 22 process areas.

• ISO 15504 [8], where we can find 48 processes.

• ITIL [9], where we have 34 management practices.

From these standard references, interesting process categories can be extracted, such as
architecture definition, monitoring, release, issue creation, validation, deployment,
infrastructure, integration, requirements elicitation, training, management, improvement,
configuration, etc.

Focusing on the DevOps process – as stated above – a review of the literature shows that, even
if there are some propositions about a DevOps process model in [10], [11], there is no sound
common standard [12], [13], [14], [15].

For the definition of the processes to be executed in the EMERALD DevOps Methodology, we
have taken as a starting point the DevOps cycle described in many publications [16], [17], [18],
[19], [20]. This cycle is also present throughout grey literature [21]. Figure 1 shows the basic
structure of the DevOps cycle shared along those publications. The Cycle is composed of the
following processes:

• Plan: During this process, the requirements are collected and prioritised. The
requirements are then used to create issues that are planned for next iterations.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 54

www.emerald-he.eu

• Code: During this process, the integration of the different components is encoded as a
container orchestration code (aka choreography). In addition, code for the environment
and side-services can be developed, when needed.

• Build: The building process is automated. It takes the choreography and deploys the
CaaS Framework in the development environment.

• Test: The test process focuses on the integration testing. It covers the development of
the necessary tests to verify the behaviour of the framework in the long term.

• Release: We create a formal release of the CaaS Framework for each release milestone
planned, as well as when updates in components require it.

• Deploy: The deploy process is automated. It takes the choreography and deploys the
tagged CaaS Framework in the production environment, and the pilot environments are
informed about the new version.

• Operate: Apart from the regular operation, this process is focussed on the validation
management.

• Monitor: The monitoring of the production environment is adapted in this stage to
cover the production and pilots’ environments.

Figure 1. DevOps Cycle

We take these processes as a basis for our DevOps Methodology, adapting them to the
specificities of the EMERALD project. For each process, we provide below a brief description and
the expected inputs and outputs.

2.3.1 Plan

During the planning process, we collect the integration and deployment needs of the project,
prioritize the activities to be performed, and track their completion. This activity is performed
on demand and periodically.

Whenever a need over the integration is identified or received, it is collected, and a quick
prioritisation is performed. In case the need is urgent, it is put into implementation. Otherwise,
it is put into the backlog of needs to be performed in the next iterations.

Besides, every two weeks, in a meeting with the development teams and the pilots, we collect
their needs and prioritise them. That meeting is also used to review the status of the tasks that
are being worked out in the DevOps team.

The starting point for the needs of the project was the project DoA [3], where the EMERALD
overall needs were described, and then the requirements gathered in the project architecture
deliverables, D1.3 [5] and D1.4 [6]. In addition, we have collected the needs from different
sources:

• Mainly, the periodic meetings with the development teams

• Messaging channels (e.g., Teams)

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 54

www.emerald-he.eu

• The EMERALD WP1 mailing list (WP1 is in charge of the integration)

• The issue mechanism in GitLab

The inputs and outputs of this process can be summarised as follows:

• Inputs:
o Requirements
o Feedback from pilots’ validation
o EMERALD Architecture
o External service requirements

• Outputs:
o Summary of the activities performed in the last cycle
o Activities to be performed in the next cycle
o Activities backlog
o Issues linked to the requirements.

2.3.2 Code

During the coding process, the integration of the different components is coded in a container
orchestration code (aka choreography). In addition, code for the environment and side-services
can be developed when needed. Once the development team has packaged or updated a
component, a collaboration cycle with the DevOps team starts. During this cycle, the DevOps
team supports the development team in different areas:

• Repository creation: The DevOps team creates a repository for each component in the
EMERALD GitLab repository and provides the necessary access to the development
team to manage their own component group.

• Image creation: The DevOps team provides support to the development team in the
creation and publishing of the Docker image (or images) for the component. On the one
hand, providing the EMERALD Artifactory repository (implemented in Artifactory3) to
store the Docker image and, on the other hand, providing support in the creation of the
Dockerfile using CI/CD GitLab components.

• Orchestration creation: A Kustomize4-based orchestration has been created to help the
development teams to create the orchestration code. The baseline orchestration has
been created in a modular way to allow the development teams to add and test their
components easily.

• Debugging support: Different resources are provided by the DevOps team to help the
development teams to debug their components. We started with the logging and the
console access to the Kubernetes cluster. Later, based on the feedback from the
development teams, we added more debugging resources to the development teams
such as the Keycloak testing environment, or the local testing environment based on
Docker Compose.

• Update Support: Guidelines and automatic update mechanisms are provided to the
development teams to help them update their components in the CaaS Framework. The
guidelines are provided in the EMERALD GitLab repository, and the automatic update
mechanisms are implemented with Renovate5 and GitLab CI/CD.

• Adding side-services: The DevOps team helps with the creation of side-services that are
needed to support the integration of the components. For example, adding
administration frontends for databases to help the development teams in the analysis

3 https://jfrog.com/artifactory/
4 https://kustomize.io
5 https://github.com/renovatebot/renovate

http://www.emerald-he.eu/
https://jfrog.com/artifactory/
https://kustomize.io/
https://github.com/renovatebot/renovate

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 54

www.emerald-he.eu

of the data contained. On the other side, the development teams are responsible of
applying the guidelines provided by the DevOps team to integrate and update their
components in the CaaS Framework. The main outcome of this process is a Kustomize
component for each of the components.

The inputs and outputs of this process can be summarised as:

• Inputs:
o Components from the different development teams in a package repository (in

EMERALD, implemented in Artifactory)

• Outputs:
o Choreography and configuration code for the integration environment.
o Infrastructure as code (IaC) for the environments.

2.3.3 Build

The building process creates a merged manifest for a specific Kustomize overlay. On the one
hand, it can be done manually – by the DevOps or the development team – to generate a
combined manifest to deploy the CaaS Framework. On the other hand, it can be done
automatically as part of the CI/CD pipelines.

The inputs and outputs of this process can be summarised as:

• Inputs:
o Packages from the components
o Choreography code and configuration for the integration environment
o Infrastructure as code (IaC) for the environments

• Outputs:
o Integration environment
o CaaS Framework in the integration environment.

2.3.4 Test

The test process covers several activities, such as the update of the candidate production
environment based on the development environment, the creation of the integration tests, and
the application of the integration tests over the candidate production environment.

First, the deployment of the candidate production environment is done automatically, together
with the build process, in a CI/CD pipeline. Then, for the creation of the integration tests, three
steps are performed:

• First, the DevOps team creates the integration tests that are needed to verify the
functionality of the evidence collector components. These components are not
deployed as part of the CaaS Framework services. Instead, they are deployed on the
resources to be certified, in order to collect evidence of their compliance. Therefore, we
need this mechanism to be able to verify the compatibility of the collectors with the
CaaS Framework.

• Second, the DevOps team creates the integration tests covering the EMERALD
workflows, as defined in D4.2 [20].

• Third, the DevOps team implements persistence tests to verify that the data in the CaaS
Framework is not lost during the deployment of new versions of the CaaS Framework.

Finally, the integration tests are to be applied over the candidate production environment. The
DevOps team provides the necessary resources to deploy the candidate production
environment and to run the integration tests. The objective of the tests is to provide some

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 54

www.emerald-he.eu

confidence on the correctness of the integration of the components before deploying them into
the intended pilots.

The inputs and outputs of this process can be summarised as:

• Inputs:
o CaaS Framework in the integration environment
o List of collector components and their usage procedures
o Main workflows defined as part of the D4.2 [20]

• Outputs:
o Integration tests
o Integration test results.

2.3.5 Release

During the planned release milestones, as well as when other releases require it, we will create
a formal release of the CaaS Framework. There are two kinds of releases:

• Milestones releases: These are planned and will take place at M18, M30 and M34.

• Minor and fix releases: These may take place at any point based on the evolution of the
components.

On the planned release milestones, the DevOps team creates a release commit over the CaaS
Framework repository. This commit triggers a Release CI/CD pipeline that creates the candidate
production environment and runs the integration tests over it. The results of the integration
tests are used to decide if the release is successful or not. The EMERALD project applies semantic
versioning [31] to the releases of the CaaS Framework. The planned releases apply a mayor
upgrade (e.g., v1.0.0 to v2.0.0) to the version of the CaaS Framework.

Other releases are triggered by the development teams when they update their components. In
this case, we use an automatic approach to introduce the new version of the component in the
CaaS Framework. The automatic approach is based on the Renovate tool. This tool scans
periodically (every week) changes in the images used in the manifests that compose the CaaS
Framework. When a new version of the image is detected, it creates a merge request with the
new version of the component. This merge request is automatically tested against the
integration tests. If the integration tests are successful, the merge request is automatically
merged into the CaaS Framework repository and a patch upgrade (e.g., v1.0.0 to v1.0.1) is
applied to the version of the CaaS Framework.

The inputs and outputs of this process can be summarised as:

• Inputs:
o Release request
o Integration tests

• Outputs:
o Integration test results
o CaaS Framework formal release.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 54

www.emerald-he.eu

2.3.6 Deploy

This process deploys the formal release of the CaaS Framework in the production environments.
We support two types of deployment:

• SaaS (Software as a Service): The CaaS Framework is deployed in the EMERALD
infrastructure and the pilots consume it as a service. In this case, the deployment is done
automatically as part of the Release CI/CD pipeline.

• On-premises: The CaaS Framework is deployed in a pilot infrastructure and the pilot
consumes it as an on-premises configuration. In this case, the deployment is done
manually.

The inputs and outputs of this process can be summarised as:

• Inputs:
o CaaS Framework formal release

• Outputs:
o Production environment as SaaS
o Pilot environments, if required.

2.3.7 Operate

Besides the regular operation activities that are performed in the production environment, as
for example:

• Capacity management

• Performance management

• Availability management

• Incident management

• Backup management

We also include in this stage the validation process, which is not performed by the DevOps team,
but by the pilots and the development teams. Please note that the DevOps team is responsible
for the validation of the CaaS Framework.

Two main aspects are covered in the Operate process:

• Gathering the feedback from the pilots and the development teams.

• Processing the feedback to improve the CaaS Framework.

Feedback is gathered through the EMERALD project communication channels. Mainly the
periodic meetings with the development teams and the pilots, and the messaging channels (e.g.,
Teams). Feedback is processed by the DevOps team and the development teams and
transformed into pending tasks in the backlog of the DevOps team. These tasks are prioritised
and at given points they become into issues in the GitLab repository. The issues are then planned
in the next iteration of the DevOps by the development teams.

The inputs and outputs of this process can be summarised as:

• Inputs:
o Tagged CaaS Framework in the production environment (and pilot

environments, if required)

• Outputs:
o Feedback from pilots’ validation.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 54

www.emerald-he.eu

2.3.8 Monitor

The monitoring of the integration environment is adapted in this stage to cover the production
and pilots’ environments. Based on the feedback from the pilots’ monitoring, mechanisms are
created to check the behaviour of the framework in the long term.

The inputs and outputs of this process can be summarised as:

• Inputs:
o Tagged CaaS Framework in the production and pilot environments, if required

• Outputs:
o Monitoring procedures
o Monitoring results.

2.4 Lifecycle

There are several applicable lifecycles in software development [22], [23], but considering the
following characteristics of the EMERALD project:

• There are different components with different set of requirement, different teams, and
different agendas.

• There are fixed milestones (see APPENDIX B: Project Milestones from the DoA) at project
level that should be achieved.

We decided to apply an iterative process, as stated in the DevOps lifecycle (see Figure 1). The
DevOps iterations are continuous and are performed whenever the DevOps team receives
integration and release requests from the development teams. Besides those requests, the
DevOps team also performs iterations every two weeks, focussing on the environment’s setup,
integration tests, monitoring mechanisms, and monitoring results.

We use three mechanisms to document the tasks to be performed (e.g., implement monitoring
service in k8sv) in the context of the DevOps activities: tasks, issues, and merge requests.

• Tasks are used in the context of the periodic meetings with the development teams and
the pilots to document the tasks that are going to be performed in the next iteration.
They are also used to document the tasks that will be performed afterwards, this is what
we call the backlog of tasks.

• Issues6 are used as the primary mechanism for documenting tasks that involve some
effort on the part of the DevOps team. Every task is documented in an issue inside the
affected repos under the DevOps group in the project GitLab repository (see Figure 2).

• Merge requests7 are used change the code in order to support the completion of the
issues created (see Figure 3).

6 https://docs.gitlab.com/ee/user/project/issues/
7 https://docs.gitlab.com/ee/user/project/merge_requests/

http://www.emerald-he.eu/
https://docs.gitlab.com/ee/user/project/issues/
https://docs.gitlab.com/ee/user/project/merge_requests/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 54

www.emerald-he.eu

Figure 2. List of Issues related to Concept & Methodology in EMERALD

In the case of issues and merge requests, they must be related with some requirement(s) in
order to keep track of its implementation in the DevOps activities. Issues are linked with the
requirements using the “linked requirements” mechanism provided by GitLab. In the case of
merge requests, if they have not been created from an issue, they will be related with an issue
in the description and that issue will be related with some requirement(s).

Figure 3. A Merge Request related to Concept & Methodology in EMERALD

Tasks are managed in an agile approach, with some flexibility. For example, if there is an urgent
need to quickly update components at the request of the development teams they will be done

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 54

www.emerald-he.eu

directly. Regular tasks enter the DevOps lifecycle as requests in the task backlog (i.e., as issues
in the DevOps repository).

At the end of each iteration (i.e., bi-weekly), we perform an internal meeting in WP1 to:

• Review the status of completion of the tasks worked out during the iteration.

• Choose the new set of tasks to be carried out during the next iteration.

The status of the DevOps tasks is visible at the DevOps group level in GitLab and is recorded in
the minutes of the periodic WP1 meetings with the development teams and the pilots.

The execution of each task may involve one or more planned processes (except for the
monitoring process that is automated and continuous), such as Code, Build, Test, Release,
Deploy, and Operate. These processes are not expected to be carried out in every task, i.e.,
depending on the nature of the task, it may involve all or some of them, and the effort in each
task varies.

http://www.emerald-he.eu/
https://git.code.tecnalia.com/groups/emerald/private/devops/-/issues

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 54

www.emerald-he.eu

3 CI/CD Strategy

This section provides details on the strategies and technical approach applied during the
development of the first version of the CaaS Framework. Besides, we also outline some
strategies that will be matured during the next stages of the project, such as those that will
support the upcoming releases of the CaaS Framework, as well as the deployment of the CaaS
Framework in the pilots. The section is divided into two main parts: CI Strategy and CD Strategy.

The description contains much information in common with D1.5 [1] with the final aim of
providing a self-contained section that facilitates the reader's understanding.

3.1 CI Strategy

For the integration of the outcomes of the development teams in the CaaS Framework, we have
applied the following technological approaches:

• Components packaged as containers

• Environment defined with Infrastructure as Code (IaC)

• Integration guidelines

• CI/CD Components

• Component based Kustomize

• Manual deployment support

• Rancher for debugging support

• Local environment for testing

• Progressive verification

• Integration automation.

3.1.1 Container-based

Container technology has proved to be a very good approach to aggregate components from
different teams. Besides, if used appropriately, it also provides de facto scalability and resilience
when we use container orchestration technologies, such as Kubernetes8 or Docker Swarm9. In
addition, the usage of the container technology promotes decoupling from the architecture
which provides some benefits over monolithic architectures [24], [25].

EMERALD prioritises container images as the default packaging technology for its components.
In case some components cannot be deployed as containers, IaC and service approaches are
prioritized as backup strategies.

As a container technology, we have used the Docker ecosystem to build and share images. For
image building we support both Docker and Docker Compose. A component of the EMERALD
architecture may include one or more dockerfiles10 to build the images that are used to deploy
the CaaS Framework. In some cases, the building process may require some orchestration. In
those cases, Docker Compose or Custom Scripting is used as well.

To support both scenarios as part of the DevOps activities, we have provided resources and
support for the automation of building such images. We have used different technologies
including:

• Docker shared runners that support Docker in Docker (dind)11 technology

8 https://kubernetes.io/
9 https://docs.docker.com/engine/swarm/
10 https://docs.docker.com/build/concepts/dockerfile/
11 https://www.docker.com/resources/docker-in-docker-containerized-ci-workflows-dockercon-2023/

http://www.emerald-he.eu/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/build/concepts/dockerfile/
https://www.docker.com/resources/docker-in-docker-containerized-ci-workflows-dockercon-2023/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 54

www.emerald-he.eu

• Kubernetes group runners

• Docker machine shared runners that support dind technology

As an IaC technology, OpenTofu12 and Ansible13 have been favoured, since both technologies are
open-source and facilitate knowledge sharing and latter distribution of the resources.

Finally, in case there are some components that cannot be physically deployed in production
and must be consumed as a service, the OpenAPI14 Specification is promoted.

Regarding the strategy with respect to the packaging on behalf of the DevOps team, it is planned
to work as follows:

• Provide example packaging approaches starting from a Docker or a Docker Compose
specification. These examples are specific to the GitLab framework used in the EMERALD
project and include:

o .gitlab-ci.yml for Docker and gitlab-ci.yml for Docker Compose.
o Example of a dockerfile.
o Example of a docker compose file.
o Readme file with indications on how to integrate the component.

• Each example includes guides on how to integrate it on the components that are stored
in the GitLab framework used in the EMERALD project.

• When necessary, WP1 has provided support in the integration of the gitlab-ci, and in the
development of Docker and Docker Compose. This has been managed through a merge
request from the interested party, which has been documented in an issue related to a
project requirement.

3.1.2 Environments with IaC

The environments that support the CaaS Framework integration and validation were developed
following an IaC approach with state of the practice open-source tools.

The integration environment has been developed following this approach. For that, a project
has been created in the private GitLab of EMERALD (emerald/private/devops/opentofu-
k8sv). This project creates a three-node Kubernetes cluster over vSphere platform and includes
instructions to replicate the deployment on another vSphere platform if necessary. In addition,
it uses a reusable set of Ansible playbooks to configure the EMERALD Kubernetes that have been
applied in this case and could also be applied on other nodes with little or no customization.

The IaC is configurable through the modification of two templated yaml files:

• Base OpenTofu hosts: (/blob/master/base_opentofu_hosts.yaml.erb), that
controls the initial creation of the virtual machines and their configuration by Ansible.

• Ansible host: (/blob/master/Ansible_hosts.yaml.erb), that configures the
machines using some Ansible-playbooks.

The same approach was followed for the instantiation of other environment and resources, so
that we can replicate them in case we need to do so in latter stages of the project.

With the project already started (M7), the integration environment was moved from vSphere to
OpenStack. In this migration we forked the IaC (emerald/private/devops/opentofu-k8sv)
into a new project (emerald/private/devops/opentofu-k8so). In this project we added the

12 https://opentofu.org/
13 https://docs.ansible.com/
14 https://www.openapis.org/

http://www.emerald-he.eu/
https://opentofu.org/
https://docs.ansible.com/
https://www.openapis.org/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 54

www.emerald-he.eu

necessary changes to deploy the CaaS Framework in OpenStack. The new project is based on the
same principles as the previous one, but it uses OpenStack as the infrastructure provider.

In the same way that any other activity in the DevOps team, the IaC development was
documented in an issue related to an EMERALD project requirement and implemented through
a merge request.

3.1.3 Integration guidelines

As part of the integration support activities, the DevOps team has developed a set of guidelines
to help in the integration of the components in the CaaS Framework. The guidelines audience is
currently the EMERALD development team.

These guidelines, that have been published in the EMERALD GitLab repository public area
(https://git.code.tecnalia.dev/emerald/public/contribute), will evolve as the project advances
and as we improve the integration process. Currently the Guidelines include:

• Enrol: How to join to the repository for contributions.

• Component Development: Guidelines for developing a new component for the CaaS
Framework.

• Component Integration: Guidelines for integrating a new component into the CaaS
Framework.

• Component Validation: Guidelines for validating a new component for the CaaS
Framework.

• Keycloak Integration: Guidelines for integrating Keycloak into the components of the
CaaS Framework.

• Component Update: Guidelines for updating a component of the CaaS Framework.

• Component Troubleshooting: Guidelines for troubleshooting a component of the CaaS
Framework.

• Semantic Versioning with GitLab CI/CD: Guidelines for versioning the components of
the CaaS Framework.

• Component Publish with GitLab CI/CD: Guidelines for setting up the CI/CD pipeline for
publishing a component image in GitLab.

In addition, a training session was organized with the development teams to explain these
guidelines and how to use them. The session was held during the General Assembly of the
EMERALD project in Barcelona, on 23rd and 24th of October 2024.

As mentioned above, the guidelines evolve as the project progresses. Significant changes to the
guidelines are presented at regular meetings with the development teams and pilot owners.

3.1.4 CI/CD Components

In order to help the development teams and the DevOps team to automate the CI/CD pipelines,
we have introduced CI/CD components into the EMERALD project. The CI/CD components are a
set of reusable components that can be used to automate the CI/CD pipelines.

For the provision of these components, we have reused some GitLab CI/CD components already
provided by the community. In particular, we have used components provided by "to be
continuous"15 as baseline. Over this base we have introduced the necessary changes to make
them work in the project infrastructure. The CI/CD components are accessible at
https://git.code.tecnalia.dev/explore/catalog.

15 https://to-be-continuous.gitlab.io/

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/contribute
https://git.code.tecnalia.dev/explore/catalog
https://to-be-continuous.gitlab.io/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 54

www.emerald-he.eu

For the development teams we have introduced several components:

• Docker (https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/docker): This component is used to build the Docker images and publish
them in an Artifactory. Additionally, it also allows to perform security checks based on
Trivy16.

• Semantic Release
((https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/semantic-release): This component is used to create releases following the
semantic versioning approach. It parses commit messages and based on their content it
modifies the version of the component creating a tag and a release. Additionally, it can
also be configured to perform additional tasks, such as creating the changelog or
modifying the version within the code.

• Gitleaks (https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/gitleaks): This component is used to verify that the code pushed into the
master branch does not contains any password in the code.

For the DevOps team, apart from the previous components, we have also introduced the
following components:

• Kubernetes (https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/kubernetes): This component is used to deploy the CaaS Framework in the
integration environment.

• Renovate (https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/renovate): This component is used to configure projects and scan their
dependencies. For each dependency, it checks if there is a new version available and if
this is the case, it creates a merge request with the new version of the dependency. This
component is used to keep the CaaS Framework up to date with the latest versions of
the components.

Additionally, for some components we have added language specific components:

• Maven (https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/maven): This component is used to build and test Maven projects. It can
also be used to publish them in an Artifactory, but in EMERALD we are not using this
feature as we are packaging the components as Docker images.

• SonarQube (https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-
components/sonar): This component was introduced as a proof of concept for one of
the components.

Together with the CI/CD components, we have added some examples on how to include them
in the CI/CD pipelines. The examples are pointed in the description of some of the CI/CD
components17. Most relevant examples for the EMERALD project are:

• CI/CD pipeline for Docker (https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-
samples/docker/18): This example uses the Docker component to build and publish the
Docker image.

16 https://aquasec.com/products/trivy/
17 Most of them are stored at https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples for
internal access. But Listing 1. CI/CD for the RCM and Listing 2. CI/CD for side-service are some examples
derived from them that are detailed in APPENDIX C: Integration files.
18 This is an internal link, which is also detailed in APPENDIX C: Integration files

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/docker
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/docker
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/semantic-release
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/semantic-release
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/gitleaks
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/gitleaks
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/kubernetes
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/kubernetes
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/renovate
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/renovate
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/maven
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/maven
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/sonar
https://git.code.tecnalia.dev/explore/catalog/smartdatalab/public/ci-cd-components/sonar
https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples/docker/
https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples/docker/
https://aquasec.com/products/trivy/
https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 54

www.emerald-he.eu

• CI/CD pipeline for Semantic Release
(https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples/semantic-
release/19): This example uses the Semantic Release component to create the release
over a dockerfile project.

These CI/CD components are being used in the components of the CaaS Framework. For
example, the RCM component uses several of them in their CI/CD pipelines, such as the Docker
component to build the Docker image and publish it in the Artifactory, the Semantic Release
component to create the release over the dockerfile project, and the Gitleaks component to
verify that the code pushed into the master branch does not contains any password in the code.
Besides, the RCM also uses the Maven component to build and test the Maven projects. This
usage is visible in the private part of the EMERALD GitLab repository
(emerald/private/components/rcm); therefore, we include below the content of one of the
.gitlab-ci.yml files as an example of the usage of the CI/CD components.

The .gitlab-ci.yml for the RCM component is included in Listing 1. In the code under the
include element the components used are added as component elements. Each component
includes a reference to the components and the inputs to modify their default behaviour. In the
code below we can see Docker, Maven, Semantic release and Gitleaks components.

include:

 - component: git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/docker/gitlab-ci-docker@master

 inputs:

 snapshot-image: $CI_REGISTRY_IMAGE/snapshot:$CI_COMMIT_REF_SLUG

 release-image: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_NAME

 hadolint-job-tags: ["docker"]

 kaniko-build-job-tags: ["docker"]

 dind-build-job-tags: ["docker"]

 buildah-build-job-tags: ["docker"]

 healthcheck-job-tags: ["docker"]

 docker-trivy-job-tags: ["docker"]

 docker-sbom-job-tags: ["docker"]

 docker-publish-job-tags: ["docker"]

 metadata: >-

 --label org.opencontainers.image.url=${CI_PROJECT_URL}

 --label org.opencontainers.image.source=${CI_PROJECT_URL}

 --label org.opencontainers.image.title=${CI_PROJECT_PATH}

 --label org.opencontainers.image.ref.name=${CI_COMMIT_REF_NAME}

 --label org.opencontainers.image.revision=${CI_COMMIT_SHA}

 --label org.opencontainers.image.created=${CI_JOB_STARTED_AT}

 --label com.jfrog.artifactory.retention.maxCount=4

 prod-publish-strategy: auto

 hadolint-disabled: true

 healthcheck-disabled: true

 trivy-disabled: true

 sbom-disabled: true

 build-tool: dind

 - component: "git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/maven/gitlab-ci-maven@master"

 inputs:

 image: maven:3.8.1-openjdk-17-slim

 mvn-build-job-tags: ["docker"]

 mvn-dependency-check-job-tags: ["docker"]

 mvn-no-snapshot-deps-job-tags: ["docker"]

 mvn-sbom-job-tags: ["docker"]

 mvn-sonar-job-tags: ["docker"]

 build-args: org.jacoco:jacoco-maven-plugin:prepare-agent package

org.jacoco:jacoco-maven-plugin:report

 sonar-base-args: clean test sonar:sonar -Dsonar.links.homepage=${CI_PROJECT_URL}

-Dsonar.links.ci=${CI_PROJECT_URL}/-/pipelines -Dsonar.links.issue=${CI_PROJECT_URL}/-

/issues ${SONAR_TOKEN:+-Dsonar.login=$SONAR_TOKEN}

 mvn-semrel-release-disabled: "false"

 - component: "git.code.tecnalia.dev/smartdatalab/public/ci-cd-components/semantic-

release/gitlab-ci-semrel@master"

19 This is an internal link, which is also detailed in APPENDIX C: Integration files

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples/semantic-release/
https://git.code.tecnalia.dev/smartdatalab/libraries/ci-cd-samples/semantic-release/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 54

www.emerald-he.eu

 inputs:

 auto-release-enabled: true

 release-disabled: false

 semantic-release-job-tags: ["docker"]

 branches-ref: "/^(master|main)$/"

 image: timbru31/java-node:17-jdk-iron

 - component: "git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/gitleaks/gitlab-ci-gitleaks@master"

 inputs:

 gitleaks-job-tags: ["docker"]

variables:

 GIT_STRATEGY: clone

 CI_REGISTRY_IMAGE: emerald-docker-dev-local.artifact.tecnalia.dev/rcm/backend

Listing 1. CI/CD for the RCM component

These components are also being used by the DevOps team. For example, we use them in the
side-service and the CaaS Framework Kustomize composition. In this composition we use the
Kubernetes component to deploy to the Kubernetes environment. We also use the Semantic
Release component to create the release over what is deployed. This usage is visible only in the
private part of the EMERALD GitLab repository (for example, emerald/private/devops/Side-
services), therefore we include below the content of one of the .gitlab-ci.yml files as an
example of the usage of the CI/CD components.

The .gitlab-ci.yml for side-services is included in Listing 2. In the code under the include
element the components used are added in component elements. Each component includes a
reference to the components and the inputs to modify their default behaviour. In the code
bellow (Listing 2) we can see Kubernetes and Semantic Release components.

include:

 - component: git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/kubernetes/gitlab-ci-k8s@master

 inputs:

 kustomize-enabled: true # latter we will use it

 score-disabled: true

 prod-space: "emerald-ext"

 prod-deploy-strategy: auto

 k8s-score-job-tags: ["docker"]

 k8s-review-job-tags: ["docker"]

 k8s-cleanup-review-job-tags: ["docker"]

 k8s-integ-job-tags: ["docker"]

 k8s-staging-job-tags: ["docker"]

 k8s-prod-job-tags: ["docker"]

 prod-url: https://k8so.emerald.digital.tecnalia.dev/k8s/clusters/local

 - component: "git.code.tecnalia.dev/smartdatalab/public/ci-cd-components/semantic-

release/gitlab-ci-semrel@master"

 inputs:

 auto-release-enabled: true

 release-disabled: false

 semantic-release-job-tags: ["docker"]

 branches-ref: "/^(master|main)$/"

Variables:

 KUBE_CONTEXT: emerald/private/devops/gitlab-agent-k8so:emerald-ext # comment when

gitlab agent for k8s stops working, and define KUBECONFIG in project variable with

values taken from rancher

 GIT_STRATEGY: clone

Listing 2. CI/CD for side-service

3.1.5 Component-based Kustomize

Under the hood, the deployment in Kubernetes is based on manifests. This is manageable for
small deployments, but as the number of components increases, it becomes harder to manage.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 54

www.emerald-he.eu

Besides, it is not flexible enough to support the different environments that we need to deploy.
For that reason, we have used Kustomize20 as the main tool to manage the manifests.

Kustomize allows to define components and overlays that fit the needs of the project. The
components are used to define the basic configuration of the EMERALD components, while the
overlays are used to adjust the configuration of the components to the specific environments.
The components can be seen in the public repository of the EMERALD project
(https://git.code.tecnalia.dev/emerald/public/caas-framework/-/tree/master/components). In
that folder we mix EMERALD components with other components required by the CaaS
Framework or required for testing it, such as:

• artifactory-secrets: This component configures the EMERALD Artifactory secret so that
the Kubernetes cluster can download the images from it.

• keycloak-secrets: This component configures the EMERALD Keycloak secret so that the
EMERALD components can use that secret to inject their Keycloak configuration.

• keycloak-loader: This component is under deprecation. It was used to load a merged
Keycloak configuration into the EMERALD Keycloak. But currently, we are moving to a
component-based approach, where each component loads its own configuration into
the EMERALD Keycloak.

• keycloak-test: this component is used in case the developers want to test their Keycloak
configuration in a testing Keycloak. It is not used in the production environment.

The overlays are placed in the root folder of the repository
(https://git.code.tecnalia.dev/emerald/public/caas-framework/-/tree/master). Currently, at
M18, we only have the integration overlay (https://git.code.tecnalia.dev/emerald/public/caas-
framework/-/tree/master/integration). In the next releases we will include the production
overlay in order to systematize the creation of new releases of the CaaS Framework.

The usage of Kustomize facilitates the deployment of the CaaS Framework. For example, to
deploy the whole development environment, providing the necessary access rights, the DevOps
team only needs to run the following commands:

```bash 

kubectl config use-context devops-kubeconfig 

kustomize build integration | kubectl apply -f - 

``` 

On the developer side, as explained in the integration guidelines, they can also destroy and
deploy their components in the development environment without affecting the other
components. To do so, they need to run the following commands:

```bash 

kubectl config use-context developer-kubeconfig 

kustomize build components/<component_name> | kubectl delete -f - 

kustomize build components/<component_name> | kubectl apply -f - 

``` 

This allows the developers to quickly test their components in the development environment
without the need to wait for the CI/CD pipeline to finish.

3.1.6 Manual deployment support

Once a component is ready to be integrated into the CaaS Framework, it is very common that
minor changes and tests are required in the component and in the way in which it is integrated
into the CaaS Framework. Performing these changes through the CI/CD pipeline may take a long

20 https://kustomize.io

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/caas-framework/-/tree/master/components
https://git.code.tecnalia.dev/emerald/public/caas-framework/-/tree/master
https://git.code.tecnalia.dev/emerald/public/caas-framework/-/tree/master/integration
https://git.code.tecnalia.dev/emerald/public/caas-framework/-/tree/master/integration
https://kustomize.io/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 54

www.emerald-he.eu

time, as it requires the developer to wait for the CI/CD pipeline to finish. This involves time,
patience and concentration from the developer, and computing resources from the EMERALD
project that might demotivate the developer, which is not a desirable situation.

Therefore, in EMERALD, when working against the CaaS Framework development environment,
we always try to provide a simple, fast and efficient way to manually deploy the changes over a
component into the CaaS Framework:

• Developers can build locally the images and push them to the EMERALD Artifactory. This
is done through the CI/CD pipeline, but it can also be done manually.

• Developers can deploy the component in the CaaS Framework development
environment. This is done through the CI/CD pipeline, but it can also be done manually.

Besides, developers are provided with CLI-based access to the CaaS Framework development
environment. This allows them to:

• quickly access logs

• copy files

• execute commands in their components

• or even create temporary containers to test their pods

Bellow, we include an example of the commands that any developer can use in order to update
a component in the CaaS Framework development environment and interact with it. In this
example we are trying to understand a problem in the RCM component that is running in the
CaaS Framework development environment. We need to test something in the RCM
component, so we run the following commands (Listing 3):

```bash 

echo "introduce a minor test change in the code" 

cd ~\git\emerald\private\components\rcm\caas-framework 

docker build -t emerald-docker-dev-local.artifact.tecnalia.dev/rcm/backend:latest . 

docker push emerald-docker-dev-local.artifact.tecnalia.dev/rcm/backend:latest 

cd ~\git\emerald\private\components\rcm\backend 

kubectl config use-context developer-kubeconfig 

kustomize build components/rcm | kubectl delete -f - 

kustomize build components/rcm | kubectl apply -f - 

kubectl logs -f $(kubectl get pods -l app=rcm -o jsonpath='{.items[0].metadata.name}') 

kubectl cp $(kubectl get pods -l app=rcm -o 

jsonpath='{.items[0].metadata.name}'):/tmp/rcm.log . 

kubectl exec -it $(kubectl get pods -l app=rcm -o 

jsonpath='{.items[0].metadata.name}') -- cat /tmp/rcm.log 

kubectl run --rm -it --image=ubuntu --restart=Never -- bash 

curl -X POST -H "Content-Type: application/json" -d 

'{"username":"admin","password":"admin"}' http://rcm:8080/rcm/api/v1/login 

exit 

echo "after evaluation the results we can continue with another test or implement a 

formal fix" 

``` 

Listing 3. Example commands to manually redeploy a component

In the code described above we can see how to:

• Build the component image and upload to the Artifactory (docker build and docker
push)

• Remove the composition from the development environment (kustomize build and
kubectl delete) and launch the composition that will reload the new component
image from the Artifactory (kustomize build and kubectl apply)

• Check the logs of the component (kubectl logs)

• Copy a file from inside the component (kubectl cp)

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 54

www.emerald-he.eu

• Execute a command into the component (kubectl exec)

• Check the RCM API internally (curl). To do so we create a temporal component in
Kubernetes to check access to services from inside the cluster (kubectl run --rm)

3.1.7 Rancher for debugging support

Besides the manual deployment support, we also provide a Rancher-based web interface to
manage the Kubernetes cluster. This is convenient for many reasons:

• Provides a user management interface

• Allows to quickly check the status of the deployments

• Provides a fast way to check the logs of the pods

User management is necessary in EMERALD because we try to simulate a realistic deployment
scenario, and it is not realistic to have an admin access when deploying the CaaS Framework in
the pilots. The Rancher user management has been used to create a highly constrain emerald-
developer user, which has only write-access on the emerald-dev project and read-access to the
Keycloak project for debugging purposes.

Besides, it is also very useful to have quick access to monitoring and debugging tools. It is very
common in the DevOps team to be inquired about the status of some aspect of the CaaS
Framework (e.g., the status of a component, the status of a deployment, or the status of a pod).
Initiating the developer CLI requires time and sometimes it may be more complex than expected.
In these cases, the Rancher interface provides a quick access to this information. The only things
required are the URL of the Rancher interface (https://k8so.emerald.digital.tecnalia.dev/) and
the user credentials.

3.1.8 Local environment for testing

A partial local environment based on Docker Compose has been created. This environment is
not intended to be used in production, but it is useful for some development and debugging
situations. It provides a faster mechanism to test interaction between components. This local
environment has been used in two situations:

• To understand the configuration of the consul service required by the RCM component.

• To understand the configuration of Keycloak for several components.

The RCM local test requires several side-services to be able to run (i.e., a database and a consul
service). These services require some initial configuration that must take place before the RCM
modules are started. In this situation, the local environment was used to understand, sequence
and test that configuration. Besides, the environment has shown to be useful not only to
understand how to configure them but also to deploy them locally. Currently the RCM
developers use the local environment when they develop the RCM component.

On the other hand, one of the challenges for the DevOps team is to understand the configuration
of the Keycloak service required by the EMERALD components. One of the lessons learn from
previous projects was that Keycloak configurations must be stored under version control. This
enables to configure the Keycloak service before the EMERALD components are started. The
local environment was used to understand, sequence and test that configuration.

3.1.9 Progressive Verification

The verification of the added and updated components of the CaaS Framework is an important
aspect to ensure the secure evolution of the platform during the project. The verification is
covered by a set of integration tests that are being automated.

http://www.emerald-he.eu/
https://k8so.emerald.digital.tecnalia.dev/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 54

www.emerald-he.eu

Verification activities focus on multiple aspects:

• Establish the means to check the health of the components

• Verify the compatibility of the evidence collector components

• Define more complex integration tests based on EMERALD workflows

In the first stage of the project, as components are added, procedures should be implemented
to check their health. These mechanisms are used during the integration tests to be performed
after the update of each component, as well as during continuous monitoring.

As the project advances, additional integration tests are added, based on requests from the
developers and feedback from the pilots.

The strategy in EMERALD is to document verification-focused activities as issues linked to the
requirements. Implementing means to check the health of a component may require
implementing parts in the choreography and parts in the component itself. More complex
integration may require implementing specific components to generate the activity required to
verify such complex integration scenarios.

3.1.10 Automation

DevOps activities focus on the automation of all the activities related to the evaluation of
components as they are updated by the developers. The main focuses of automation are:

• Update the integration platform as the developers update the components.

• Run the integration test as the platform is updated.

• Update the monitoring mechanism to measure the health of the CaaS Framework in
the long term.

The strategy is to use GitLab Agent21 for Kubernetes, implemented in the DevOps repository
inside the GitLab repository of EMERALD (emerald/private/devops/gitlab-agent-k8so). It
monitors the CaaS Framework repository, and every change detected there is translated into
the aimed environments, which allows to deploy new component versions directly, without
integration testing. This is done to speed up the feedback to the development team. Integration
tests are started at a later stage, using a GitLab runner.

The monitoring mechanism is updated following the same approach as the CaaS Framework,
i.e., we use the GitLab Agent for Kubernetes for this purpose as well.

3.2 CD Strategy

For the deployment of the CaaS Framework to be evaluated by the project and the pilots, the
following technological approaches are applied:

• Releases

• Public Assets Release

• Keycloak Configuration

• Demo pilot

• Documentation

• Environment defined with IaC

• Deployment automation

21 https://docs.gitlab.com/user/clusters/agent/install/

http://www.emerald-he.eu/
https://docs.gitlab.com/user/clusters/agent/install/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 54

www.emerald-he.eu

3.2.1 Releases

The project follows a versioning system with three mayor releases:

• v1.0.0 - First release of the EMERALD components in month 18

• v2.0.0 - Second release of EMERALD components in month 30

• v3.0.0 - Final release of EMERALD integrated audit suite in month 34

Additional releases are expected between those mayor releases, as the project advances and
the CaaS Framework is validated. Versions v1.x.x have been created during the first iterations of
the project before the month 12. Versions v3.x.x are also expected based on the feedback of the
last validation activities.

The strategy for the releases starts with a petition from an EMERALD partner (see Figure 4).
Basically, the release consists of moving the content from the integration branch to the
production branch. To perform this process an issue is created describing the request and the
purpose. From that issue a new draft merge request is created over the production branch. That
creates a new working branch, where we move the integration version that we want to move to
production. The integration version to be deployed should have been successfully verified with
the integration tests, otherwise we notify the risk before proceeding. After that, we change the
draft status on the merge request, which enables the merge action over the production branch.
We perform the merging that updates the production version. Finally, we communicate the
change to the EMERALD project.

Figure 4. A Merge Request mechanism to produce a new release in EMERALD

3.2.2 Public Assets Release

For the public release of the CaaS Framework (https://git.code.tecnalia.dev/emerald/public), we
have defined the following strategy:

• A common structure for the components has been defined that is replicated in the
private and public repositories.

• An automated procedure has been implemented to promote the components from the
private to the public repository.

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 54

www.emerald-he.eu

• The CaaS Framework is located at the root of the public repository.

• A description of the public repository is included at the top of the public repository.

3.2.3 Keycloak configuration

The strategy with regards to the identity and access management is to assume it as an external
service. We follow this approach because, in a real deployment, we could be facing a situation
in which we are requested to use an existing identity and access management service in which
we may not have administration rights.

So, the strategy for the Keycloak configuration management is reducing the administration
requirements to the minimum. In this case, we will assume that in order to deploy the EMERALD
CaaS framework we will only require a pre-existing realm and a user with rights to configure that
realm.

Using that user, during the startup of the EMERALD framework, we upload the configuration of
each component to the Keycloak service. This is done through a Keycloak loading job in each of
the components. This supports the following objectives:

• Reduce the configuration requirements to the minimum.

• Allow the components to be deployed in a pre-existing Keycloak service.

• Facilitate the evolution of the Keycloak configuration of the components in an isolated
way.

3.2.4 Demo pilot

One of the main goals of the EMERALD methodology, apart from the creation of the CaaS
Framework, is to facilitate the validation of the CaaS Framework in the pilots. With the purpose
of checking the deployment of a Demo pilot and its update, a separate demo environment will
be created. So, we will create a repository for the demo pilot (emerald/private/devops/demo)
that will contain the necessary elements for deployment:

• Configuration files for the demo pilot

• Secrets for the demo pilot

• Keycloak deployment for the demo pilot

• CaaS Framework deployment for the demo pilot.

3.2.5 Documentation

The documentation regarding the CaaS Framework is generated as part of the deployment to
production. So, the focus of the documentation is on the deployment and configuration of the
pilots.

We provide the installation and configuration instructions for the CaaS Framework in the
README.md file of the public repository, which includes information about:

• Initial deployment of the CaaS Framework. Including details on how to configure the
CaaS Framework to adjust to the specific needs of the pilots

• Update of the CaaS Framework

• Information about the feedback channels

• Information about the contribution mechanisms

• Information about the project roadmap

• General information about Authors, Acknowledgment and License

• Information about the project status

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 54

www.emerald-he.eu

More contents will be added to the documentation in case it is necessary, for example to explain
the usage of the evidence collector components in the pilots.

Currently the documentation is available in the public repository of the EMERALD project
(https://git.code.tecnalia.dev/emerald/public/caas-framework).The documentation is included
in the README.md file of the public repository.

Other documentation mechanisms may be added in the future to complement the installation
and configuration information, such as the information generated using the pages feature of
GitLab22.

3.2.6 Environments with IaC

The production environment is deployed using IaC, with the same approach used for the
integration environment. Besides, the DevOps team will support the generation of additional
environments, if needed. For example, environments on pilots’ premises due to privacy or legal
restrictions.

The strategy for the production environment IaC is similar to the strategy with the integration
IaC. That is, as any other activity in the DevOps team, it is documented in an issue related to an
EMERALD project requirement and implemented through a merge request.

3.2.7 Automation

The DevOps strategy works towards the automation of all activities related to the creation of
releases and their deployment in the production environment. The main aspects of automation
are focused on:

• Deploying specific releases to specific environments.

• Updating the monitoring mechanism to measure the long-term health of the CaaS
Framework.

The automation strategy during deployment is similar to that of integration. We use GitLab
Agent for Kubernetes to translate new releases on the production environment. For the pilot
environments, we leave it up to the pilot owners to decide the procedure for updating their
respective environments.

22 https://docs.gitlab.com/user/project/pages/

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/caas-framework
https://docs.gitlab.com/user/project/pages/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 54

www.emerald-he.eu

4 Conclusions

This document is the second and final version of the DevOps approach for EMERALD, where we
have leveraged the baselines of the DevOps strategy presented in the previous version a year
ago. In a year’s time, we have put in practice the initial ideas to release the first version of the
CaaS Framework, learnt some lessons and further develop the integration approach. The result
of this process is this updated version of the report, containing a detailed description of the
CI/CD process implemented.

The main guiding principle of this version is to provide the elements that help in the support of
the transition of the EMERALD CaaS Framework to the pilots. This support will aim not only the
initial deployment of the CaaS Framework, but also the evolution of the CaaS Framework during
the project.

The methodology used customizes the commonly used DevOps lifecycle to the characteristics
and constrains of the EMERALD project. This lifecycle consists of the following steps: Plan, Code,
Build, Test, Release, Deploy, Operate, and Monitor. The goals of the defined methodology are
to be release-based, manage feedback, manage components, keep traceability, manage the
environments, and integrate as soon as possible. In this line, we have presented the main
customised processes, as well as a tailored approach to iterate, so that we prioritise speed of
integration over other elements.

In the CI/CD strategy part, we have described the technical approaches that we will implement
to support the EMERALD project needs. In this sense, we will leverage some technologies and
state of the practice DevOps resources, such as:

• Configuration management with IaC

• GitLab features with respect to:
o Issues
o Git workflows (branches and merge requests)
o Automation with GitLab CI/CD Components
o Documentation

• Releases with containers

• Container orchestration technologies

It is likely that during the course of the project some changes will be made to the DevOps
methodology and the CI/CD Strategy, however the fundamental processes have already been
defined in this deliverable and are in operation.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 54

www.emerald-he.eu

5 References

[1] EMERALD Consortium, “D1.5 DevOps methodology and CI/CD strategy for EMERALD-v1,”
2024.

[2] EMERALD Consortium, “Home page,” [Online]. Available: https://www.emerald-he.eu/.
[Accessed April 2025].

[3] EMERALD Consortium, “EMERALD - Annex 1 - Description of Action - GA 101120688,”
2022.

[4] ISO, “ISO 16290:2013, Space systems — Definition of the Technology Readiness Levels
(TRLs) and their criteria of assessment,” 2013.

[5] EMERALD Consortium, “D1.3 EMERALD solution architecture-v1,” 2024.

[6] EMERALD Consortium, “D1.4 EMERALD solution architecture - V2,” 2025.

[7] CMMI Dev, “CMMI for Development, Version 1.3,” Software Engineering Institute (SEI),
Ed., 2010.

[8] International Organisation for Standardization (ISO/IEC), “ISO/IEC 15504-1:2004
Information Technology – Process Assessment – Part 1: Concepts and Vocabulary,” 2004.

[9] AXELOS, “ITIL Foundation,” Stationery Office Books, Norwich, England, 2019.

[10] J. A. V. M. K. Jayakody and a. W. M. J. I. Wijayanayake, “Process Improvement Framework
for DevOps Adoption in Software Development,” in 2023 International Research
Conference on Smart Computing and Systems Engineering (SCSE), IEEE, Jun. 2023. doi:
10.1109/scse59836.2023.10214992, 2023.

[11] I. Bucena and M. Kirikova, “Simplifying the DevOps Adoption Process,” in BIR Workshops,
pp. 1–15, 2017.

[12] R. d. Feijter, “Towards the adoption of DevOps in software product organizations: A
Maturity Model Approach,” Master’s Thesis, 2017.

[13] S. Badshah, A. A. Khan and B. Khan, “Towards Process Improvement in DevOps: A
Systematic Literature Review’,” in Proceedings of the Evaluation and Assessment in
Software Engineering, EASE ’20. ACM, Apr. 2020. doi: 10.1145/3383219.3383280.

[14] R. Amaro, R. Pereira and M. M. da Silva, “Capabilities and Practices in DevOps: A Multivocal
Literature Review,” in IEEE Trans. Softw. Eng., vol. 49, no. 2, pp. 883–901, Feb. 2023, doi:
10.1109/tse.2022.3166626.

[15] M. Gasparaitė and S. Ragaišis, “Comparison of devops maturity models,” in IVUS 2019.
Proceedings of the International Conference on Information Technologies Kaunas,
Lithuania, April 25, 2019, CEUR-WS. org, 2019, pp. 65–69.

[16] R. T. Yarlagadda, “DevOps and its practices,” in Int. J. Creat. Res. Thoughts IJCRT ISSN, pp.
2320–2882, 2021.

[17] A. Colantoni, L. Berardinelli and M. Wimmer, “DevopsML: Towards modeling devops
processes and platforms,” in Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings, pp. 1–1,
2020.

[18] R. Amaro, R. Pereira and M. M. da Silva, “DevOps Metrics and KPIs: A Multivocal Literature
Review,” in ACM Comput. Surv., Mar. 2024, doi: 10.1145/3652508.

[19] A. V. Jha et al., “From theory to practice: Understanding DevOps culture and mindset,” in
Cogent Eng., vol. 10, no. 1, p. 2251758, 2023.

[20] H. R. Kadaskar, “Unleashing the Power of Devops in Software Development,” in Int. J. Sci.
Res. Mod. Sci. Technol., vol. 3, no. 3, pp. 01–07, 2024.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 39 of 54

www.emerald-he.eu

[21] Wikipedia, “DevOps toolchain,” 20 Jan 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=DevOps_toolchain&oldid=1197449470.
[Accessed Apr 2025].

[22] A. M. Davis, E. H. Bersoff and a. E. R. Comer, “A strategy for comparing alternative software
development life cycle models,” in IEEE Trans. Softw. Eng., vol. 14, no. 10, pp. 1453–1461,
doi: 10.1109/32.6190, 1988.

[23] A. Mishra and D. Dubey, “A comparative study of different software development life cycle
models in different scenarios,” in Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 5,
2013.

[24] M. Kalske and others, “Transforming monolithic architecture towards microservice
architecture,” Univ. Hels., 2017.

[25] J.-P. Gouigoux and D. Tamzalit, “From Monolith to Microservices: Lessons Learned on an
Industrial Migration to a Web Oriented Architecture,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), Gothenburg, France: IEEE, Apr.
2.

[26] EMERALD Consortium, “D7.1 Project Manual and Quality Plan,” 2024.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 40 of 54

www.emerald-he.eu

APPENDIX A: Project Risks and impact in the DevOps Methodology

This section makes an analysis of some of the risks defined in the project – initially from the DoA
[3] and then extended in D7.1 [26] - and the impact that the DevOps Methodology can have to
mitigate them. It is important to note that these can evolve as part of the EMERALD Task 7.2
Quality Assurance & Risk Management.

Table 2. Risk and mitigation list

Risk n. Description Proposed Mitigation Measures

1 EUCS is not ready until 2026. Not relevant.

2 Incompatibility between OSCAL and
EMERALD (data import/export,
modelling of security schemes).

Not relevant.

3 Users experience low usability. WP4 will work in the UI/UX concept. The
methodology contains activities to manage
feedback from pilots.

4 EMERALD components are not able
to be fully integrated.

The methodology should control which
components are integrated and which
components are not integrated.

5 Data set not sufficient for reaching
TRL7 on the evidence collector
components.

Not relevant. It should be controlled by the
validation activities as part of other work
packages.

6 The implementation does not cover
all the use cases.

The methodology deployment activities
should keep track of the use cases
involved.

7 Underestimation of effort needed to
complete activities.

The methodological approach promotes
short cycles that will help to identify those
situations faster. Besides, short cycles will
focus on having running versions, and
clearer view of what is missing.

8 Technology changes require
significant redesign of the EMERALD
architecture.

Integration tests will help to verify the
redesigned elements. This will speed up
the verification of refactored components
as they are changed to the new
architecture.

9 A partner fails to meet the
obligations and becomes non-
performing or even defaulting.

The methodological approach should
promote multiple versions to have partial
versions (instead of no versions) in that
case.

10 Partner heterogeneity:
The different organizational and
national cultures cause collaboration
problems or conflicts in the project
consortium

The methodology has been defined at the
beginning of the project, and the clarity of
the process paves the way for an easier
collaboration.

13 Project execution risks:
a) key milestones are delayed
b) critical deliverables are delayed

The DevOps methodology, bringing
together the work of developers,
integrators and final users, helps to
mitigate the possible delays.

14 Project key technologies,
development risks:

The DevOps Methodology can be easily
adapted to cover other development
languages or technologies.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 41 of 54

www.emerald-he.eu

a) Key technologies or components
are not available at the expected
time

b) development takes longer than
expected

c) wrong technology base is
selected

d) lacking consensus on the
technological approach between
scientific partners

The DevOps Methodology automates the
integration of the source code, and thus
can speed up the deployment of delayed
releases to make them available for the
Use Cases.

15 Use case implementation is poor The DevOps Methodology will produce
three releases, as defined in the project
plan, and the successive feedback can help
making a better final implementation.
Also, the IaC approach of the DevOps
Methodology is a mitigation measure.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 42 of 54

www.emerald-he.eu

APPENDIX B: Project Milestones from the DoA

This section includes the project milestone taken from the Description of Action (DoA) of
EMERALD [3].

Title Validation Month

1 Project baselines and definition.
Pilot set-up. Certification Graph
Schema created.

• Project manual, public website. Defined
the dissemination, communication and
networking strategy.

• Market analysis for EMERALD developed.

• Data modelling for EMERALD components
and initial design and requirements of the
components.

• CD/CI methodology for EMERALD
defined.

• Pilots’ definition and evaluation strategy
set up.

9

2 First release of the EMERALD
components.

• EMERALD overall design specification and
architecture

• Initial prototypes of the main components
of EMERALD.

12

3 First release of EMERALD
integrated audit suite. First version
of the EMERALD business models
and plans, communication and
dissemination report.

• Initial prototype of the EMERALD
integrated solution with the
functionalities implemented at M12.

• First versions of the EMERALD business
models, dissemination and
communication reports.

• Second version of EMERALD CD/CI
methodology.

18

4 First implementation and
evaluation of the first release of the
EMERALD solution in the pilots.

• First implementation of the first release of
the EMERALD tools in the use cases

20

5 Second release of EMERALD
components.

• Second version of the EMERALD
architecture.

• Second releases of the main components
of EMERALD.

24

6 Second release of EMERALD
integrated audit suite.

• Second prototype of the EMERALD
integrated solution with the
functionalities implemented at M24.

30

7 Second implementation and
evaluation of the second release of
the EMERALD solution in the pilots.

• Second implementation of the second
release of the EMERALD tools in the use
cases.

32

8 Final release of EMERALD
integrated audit suite.

• Final prototype of the EMERALD
integrated solution with feedback from
the second evaluation of the pilots.

34

9 Final evaluation report and impact
analysis. Final version of the
EMERALD business models and
plans, communication, and
dissemination report.

• Final evaluation and impact analysis from
the pilots.

• Final versions of the EMERALD business
models dissemination and
communication reports.

36

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 43 of 54

www.emerald-he.eu

APPENDIX C: Integration files

This annex provides additional technical details about the CI/CD strategies, such as the renovate
mechanism, the semantic versioning configuration, the Kustomize approach and the Docker
Compose files. We also include some CI/CD samples as reference, as they are placed in the
private GitLab area.

C.1 – Renovate mechanism

The CaaS Framework evolves for two main reasons: the need to adjust the integration, or the
need to update a specific component. The first case is expected to be the most common one in
the initial phases of the project. The second case is expected to be more common in the last
phases of the project, when the integration is more stable.

For this second case, we have implemented a Renovate mechanism that is based on the GitLab
CI/CD pipeline. In the private area of the EMERALD GitLab repository, we have a project
(emerald/private/devops/renovate-agent) that includes two main elements:

• A GitLab CI/CD pipeline that runs Renovate over a set of repositories

• A scheduled pipeline that runs the Renovate pipeline every week

Listing 4 shows the content of the .gitlab-ci.yml file of the renovate-agent project. The main
elements of the file are the include element and the RENOVATE_REPOSITORIES variable. The
include element includes the component renovate-agent, which is the main element of the
pipeline. The RENOVATE_REPOSITORIES variable defines the repositories that will be updated
by the Renovate mechanism:

• emerald/private/devops/side-services

• emerald/private/devops/caas-framework

• emerald/private/devops/caas-framework-development

include:

 # renovate template

 - component: "git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/renovate/gitlab-ci-renovate@master"

 inputs:

 renovate-validator-job-tags: ["docker"]

 renovate-depcheck-job-tags: ["docker"]

renovate-depcheck:

 rules:

 # not dry run on manual, schedule, pipeline or trigger

 - if: '$CI_PIPELINE_SOURCE == "schedule" || $CI_PIPELINE_SOURCE == "web" ||

$CI_PIPELINE_SOURCE == "pipeline" || $CI_PIPELINE_SOURCE == "trigger"'

 variables:

 RENOVATE_DRY_RUN: "false"

 - if: $RENOVATE_TOKEN

variables:

 RENOVATE_REPOSITORIES: '["emerald/private/devops/side-services",

"emerald/private/Devops/caas-framework", "emerald/private/devops/caas-framework-

development"]'

Listing 4. Renovate pipeline (.gitlab-ci.yml)

We configure the scheduled pipelines using the GitLab web interface
(https://git.code.tecnalia.dev/emerald/private/devops/renovate-agent/-/pipeline_schedules).
Figure 5 shows the current configuration of that schedule.

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/private/devops/renovate-agent/-/pipeline_schedules

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 44 of 54

www.emerald-he.eu

Figure 5. Renovate schedule

Another aspect of the Renovate configuration is the configuration of the
RENOVATE_REPOSITORIES. This configuration is optional and is defined in a file called
renovate.json located at the root of the repository. Listing 5 shows the configuration used in
the side-services as example.

{

 "$schema": "https://docs.renovatebot.com/renovate-schema.json",

 "extends": ["config:base"],

 "packageRules": [

 {

 "matchManagers": ["gitlabci"],

 "automerge": true,

 "automergeType": "pr",

 "platformAutomerge": true,

 "rebaseWhen": "auto",

 "ignoreTests": true

 },

 {

 "matchManagers": ["kubernetes"],

 "semanticCommitType": "fix",

 "automerge": true,

 "automergeType": "pr",

 "platformAutomerge": true,

 "rebaseWhen": "auto",

 "ignoreTests": true

 }

],

 "kubernetes": {

 "fileMatch": ["architecture-and-data-modelling/.+\\.yml$"]

 }

}

Listing 5. Content of the file renovate.json

This file configures the behaviour of the Renovate component. For example, in the side-services
project we concentrate the Renovate in gitlabci and Kubernetes technologies. Besides, for the
Kubernetes technology we configure it to check only files under the architecture and data
modelling folder.

C.2 – Semantic Versioning Configuration

Another aspect is the semantic versioning configuration. Every time a new commit is pushed on
components or integration projects, if the Semantic Release CI/CD component is included in the
.gitlab-ci.yaml a new release is generated.

In a similar way to Renovate, Semantic Release has a default behaviour that can be configured
with a .releaserc.yaml file. Listing 6 shows the .releaserc.yaml in the architecture and data
modelling repository (emerald/private/architecture-and-data-modelling).

plugins:

 - '@semantic-release/commit-analyzer'

 - '@semantic-release/release-notes-generator'

 - '@semantic-release/gitlab'

 - '@semantic-release/changelog'

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 45 of 54

www.emerald-he.eu

 # emulates bumpversion (replaces version in pyproject.toml)

 - - semantic-release-replace-plugin

 - replacements:

 - files:

 - index.html

 from:

 - 'release: *\d+\.\d+\.\d+'

 to: 'release: ${nextRelease.version}'

 countMatches: true

 # git commit/push modified files (CHANGELOG.md & pyproject.toml)

 - - '@semantic-release/git'

 - assets:

 - index.html

 - CHANGELOG.md

 # the commit MUST trigger a pipeline on tag (to perform publish jobs)

 # can be skipped on prod branch

 message: 'chore(semantic-release): release ${nextRelease.version} - [ci skip on

prod]'

branches:

 - main

 - master

tagFormat: '${version}'

Listing 6. Content of the file .releaserc.yaml

In this configuration we use different plugins, the most interesting ones are:

• release notes generator: this includes notes in the release.

• changelog: this includes a changelog file in the repository.

• release replace plugin: this finds regular expressions and replaces them with text. It is
useful to introduce the version in the configuration files of the code.

C.3 – Kustomize approach

In this section we provide additional details for the Kustomize structure used in the CaaS
Framework. Figure 6 shows a visual description of the structure of the Kustomize configuration
of the integrated version of framework.

Figure 6. Kustomize main structure of the integrated CaaS framework

The main elements of the Kustomize component base structure are:

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 46 of 54

www.emerald-he.eu

• Overlays (currently integration): describes the deployment of an environment, in this
case the deployment environment.

• Components: includes the manifest for each component of the CaaS Framework. Most
of the components are related to project functional components (AMOE, RCM, etc.).

• Base: describes the components that are included in the deployment. This base
deployment is modified by the overlay to adapt to the different environments.

The files that describe the overlay are simple. Listing 7 shows an example. They basically point
to the baseline to be used and over that base they describe the modifications to be applied. In
the case below (Listing 7) it states that the namespace of the manifests merged in the base
should be emerald-dev.

resources:

 - ./../base

namespace: emerald-dev

Listing 7. Kustomize integrate overlay

The files that describe the base are simple as well. Listing 8 shows an example. They basically
enumerate the components to be included in the baseline. In the file below (Listing 8) it states
the components and subcomponents that build the CaaS framework.

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

namespace: emerald-prod

components:

- ./../components/artifactory-secrets

- ./../components/keycloak-secrets

- ./../components/tws

- ./../components/rcm/keycloak/data

- ./../components/rcm/keycloak/loader

- ./../components/rcm

- ./../components/amoe/keycloak/data

- ./../components/amoe/keycloak/loader

- ./../components/amoe

- ./../components/orchestrator/keycloak/data

- ./../components/orchestrator/keycloak/loader

- ./../components/orchestrator

- ./../components/assessment/keycloak/data

- ./../components/assessment/keycloak/loader

- ./../components/assessment

- ./../components/emerald-ui/keycloak/data

- ./../components/emerald-ui/keycloak/loader

- ./../components/emerald-ui

- ./../components/clouditor-discovery/keycloak/data

- ./../components/clouditor-discovery/keycloak/loader

- ./../components/clouditor-discovery

- ./../components/evaluation/keycloak/data

- ./../components/evaluation/keycloak/loader

- ./../components/evaluation

- ./../components/evidence-store/keycloak/data

- ./../components/evidence-store/keycloak/loader

- ./../components/evidence-store

- ./../components/mari/keycloak/data

- ./../components/mari/keycloak/loader

- ./../components/mari

Listing 8. Kustomize base

The complexity comes in the components’ specification. Inside each component folder, as
shown in Figure 7, we will find multiple Kubernetes manifest (services, deployments, ingress,
storage, jobs, configmaps, secrets, ...) that are joined in a Kustomize file.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 47 of 54

www.emerald-he.eu

Figure 7. Kustomize component

The Kustomize file allows to create different elements for the component. Listing 9 shows an
example of this file.

apiVersion: kustomize.config.k8s.io/v1alpha1

kind: Component

namespace: emerald-dev

configMapGenerator:

- files:

 - ./configmaps/consul-config-loader/rcmBackend.yml

 - ./configmaps/consul-config-loader/rcmFrontend.yml

 name: rcm-consul-config-loader

 options:

 disableNameSuffixHash: true

- files:

 - ./configmaps/mariadb-config/my.cnf

 name: rcm-maridb-config

 options:

 disableNameSuffixHash: true

- files:

 - ./configmaps/mariadb-setup-dbs/01_create_rcmfrontend_database.sql

 - ./configmaps/mariadb-setup-dbs/01_create_rcmbackend_database.sql

 - ./configmaps/mariadb-setup-dbs/02_create_user.sh

 - ./configmaps/mariadb-setup-dbs/03_grant_rcmfrontend_access.sh

 - ./configmaps/mariadb-setup-dbs/03_create_rcmbackend_access.sh

 name: rcm-mariadb-setup-dbs

 options:

 disableNameSuffixHash: true

secretGenerator:

- envs:

 - ./.secrets/rcm_mariadb

 name: rcm-mariadb

 options:

 disableNameSuffixHash: true

- envs:

 - ./.secrets/rcm_backend

 name: rcm-backend

 options:

 disableNameSuffixHash: true

- envs:

 - ./.secrets/rcm_frontend

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 48 of 54

www.emerald-he.eu

 name: rcm-frontend

 options:

 disableNameSuffixHash: true

- envs:

 - ./.secrets/rcm_converter

 name: rcm-converter

 options:

 disableNameSuffixHash: true

resources:

- ./01-consul-service.yaml

- ./02-consul-deployment.yaml

- ./03-consul-ingress.yaml

- ./04-consul-config-loader-deployment.yaml

- ./05-mariadb-service.yaml

- ./06-mariadb-persistance-volume-claim.yaml

- ./07-mariadb-deployment.yaml

- ./08-adminer-service.yaml

- ./09-adminer-deployment.yaml

- ./10-adminer-ingress.yaml

- ./11-mariadb-setup-dbs-job.yaml

- ./12-backend-service.yaml

- ./13-backend-deployment.yaml

- ./14-frontend-service.yaml

- ./15-frontend-deployment.yaml

- ./16-frontend-ingress.yaml

- ./17-converter-service.yaml

- ./18-converter-deployment.yaml

- ./19-mariadb-setup-db-job.yaml

components:

- patches/keycloak-loader

Listing 9. Kustomize RCM component

In this Kustomize code we can see some of the common Kustomize elements used:

• configMapGenerator: to load files as configmaps

• secretGenerator: to load secrets of different types

• resources: to add the manifests that declare the volume claims, services, deployments,
ingresses, etc. to be created in Kubernetes

• components: to add other components

C.4 – Docker compose approach

In this section we present the structure of the local development framework used for the
internal test based on Docker Compose. Figure 8 presents the structure of this framework.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 49 of 54

www.emerald-he.eu

Figure 8. Docker Compose framework

The most remarkable elements in this structure are:

• components: In the git folder we include the projects of the different EMERALD
components such as RCM. They are linked using the git submodule approach.

• data: In the data folder we point to the CaaS framework project with the git submodule
mechanism.

The usage of this framework is simple once it is defined. If we are checking a component, we
start it with:

docker compose up <component name>

To know the components included we issue a:

docker compose config --services

Figure 9 shows the current list of services supported in the local development environment.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 50 of 54

www.emerald-he.eu

Figure 9. Local environment services

For example, if we are analysing the rcm-backend we just need to issue:

docker compose up rcm-backend

This will start the dependent services and once all the prerequisites have been started the rcm-
backend will start, as shown in Figure 10.

The advantage appears when we are testing the effect of a small change. We can perform a
change in the inner services, such as changing a property in the rcm-backend code (e.g., a
description, as shown in Figure 10).

Figure 10. RCM change

Once the change has been made, to test again we only have to issue:

docker compose build rcm-backend

docker compose up rcm-backend

docker compose log rcm-backend

C.5 – CI/CD Examples

In the internal area of the GitLab repository there are several examples on how to apply the
CI/CD Components. Here we describe some of them:

• Docker

• Semantic Versioning

Figure 11 shows the details of a Docker example that includes four files:

• .gitlab-ci.yml: This is the most important file that will be explained below.

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 51 of 54

www.emerald-he.eu

• Dockerfile: This is the main Docker artifact. We added a very simple Docker file that adds
some packages to a base Ubuntu image.

• LICENSE: This is a must have for any kind of repository.

• README.md: This explains the repository and its purpose.

Figure 11. Docker CI/CD example

The focus of the example is to provide information on the GitLab CI/CD configuration. Listing 10
shows the content of the file.

include:

 - component: git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/docker/gitlab-ci-docker@5

 inputs:

 snapshot-image: $CI_REGISTRY_IMAGE/snapshot:$CI_COMMIT_REF_SLUG

 release-image: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_NAME

 kaniko-build-job-tags: ["docker"]

 docker-publish-job-tags: ["docker"]

 # https://github.com/jfrog/artifactory-user-

plugins/blob/master/cleanup/cleanDockerImages/README.md

 metadata: >-

 --label org.opencontainers.image.url=${CI_PROJECT_URL}

 --label org.opencontainers.image.source=${CI_PROJECT_URL}

 --label org.opencontainers.image.title=${CI_PROJECT_PATH}

 --label org.opencontainers.image.ref.name=${CI_COMMIT_REF_NAME}

 --label org.opencontainers.image.revision=${CI_COMMIT_SHA}

 --label org.opencontainers.image.created=${CI_JOB_STARTED_AT}

 --label com.jfrog.artifactory.retention.maxCount=4

 prod-publish-strategy: auto

 hadolint-disabled: true

 healthcheck-disabled: true

 trivy-disabled: true

 sbom-disabled: true

variables:

 CI_REGISTRY_IMAGE: emerald-docker-dev-local.artifact.tecnalia.dev/template-docker

 # CI_REGISTRY_USER defined in GitLab CI/CD settings

 # CI_REGISTRY_PASSWORD defined in GitLab CI/CD settings

Listing 10. CI/CD for docker generation

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 52 of 54

www.emerald-he.eu

In the .gitlab-ci.yml code above you can see the usage of the release 5 Docker component
(https://git.code.tecnalia.dev/smartdatalab/public/ci-cd-components/docker/gitlab-ci-
docker@5). This means that the last release 5 will be applied. The component behaviour is
controlled with input parameters, where we can:

• Specify the names of the images

• Filter the runners applicable for each of the jobs

• Add metadata to the image before publishing into Artifactory

• Select the building engine

• Enable or disable additional test and features.

The example is used internally, as well as the example pipelines (see Figure 12).

Figure 12. docker CI/CD example pipelines

We can also see the details of each stage (see Figure 13).

Figure 13. Docker CI/CD stages detail

Semantic Release examples follow a similar structure (see Figure 14). This example builds on the
Docker example by adding semantic versioning capability.

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/smartdatalab/public/ci-cd-components/docker/gitlab-ci-docker@5
https://git.code.tecnalia.dev/smartdatalab/public/ci-cd-components/docker/gitlab-ci-docker@5

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 53 of 54

www.emerald-he.eu

Figure 14. Semantic release CI/CD example

The focus of this example is to provide information on the GitLab CI/CD configuration. Listing 11
shows the content of the file.

include:

 - component: git.code.tecnalia.dev/smartdatalab/public/ci-cd-

components/docker/gitlab-ci-docker@5

 inputs:

 snapshot-image: $CI_REGISTRY_IMAGE/snapshot:$CI_COMMIT_REF_SLUG

 release-image: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_NAME

 kaniko-build-job-tags: ["docker"]

 docker-publish-job-tags: ["docker"]

 # https://github.com/jfrog/artifactory-user-

plugins/blob/master/cleanup/cleanDockerImages/README.md

 metadata: >-

 --label org.opencontainers.image.url=${CI_PROJECT_URL}

 --label org.opencontainers.image.source=${CI_PROJECT_URL}

 --label org.opencontainers.image.title=${CI_PROJECT_PATH}

 --label org.opencontainers.image.ref.name=${CI_COMMIT_REF_NAME}

 --label org.opencontainers.image.revision=${CI_COMMIT_SHA}

 --label org.opencontainers.image.created=${CI_JOB_STARTED_AT}

 --label com.jfrog.artifactory.retention.maxCount=4

 prod-publish-strategy: auto

 hadolint-disabled: true

 healthcheck-disabled: true

 trivy-disabled: true

 sbom-disabled: true

 - component: git.code.tecnalia.dev/smartdatalab/public/ci-cd-components/semantic-

release/gitlab-ci-semrel@3

 inputs:

 release-disabled: false

 semantic-release-job-tags: ["docker"]

 auto-release-enabled: true

http://www.emerald-he.eu/

DRAFT
D1.6 – DevOps methodology
and CI/CD strategy for EMERALD-v2 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 54 of 54

www.emerald-he.eu

 branches-ref: "/^(master|main)$/"

variables:

 CI_REGISTRY_IMAGE: emerald-docker-dev-local.artifact.tecnalia.dev/template-docker

 # CI_REGISTRY_USER defined in GitLab CI/CD settings

 # CI_REGISTRY_PASSWORD defined in GitLab CI/CD settings

Listing 11. CI/CD for semantic release generation

In the .gitlab-ci.yml code above you can see how we extend the previous Docker example
with five lines to declare the component’s Semantic release and parametrize its behaviour.

We have also tested it, and you can see the pipelines and details of their stages. In the image
below (Figure 15) we can see that it is similar to the Docker pipeline but with an additional job.

Figure 15. Semantic release CI/CD stages detail

http://www.emerald-he.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document Structure
	1.3 Updates from D1.5

	2 DevOps Methodology
	2.1 Context
	2.2 Goals
	2.3 Processes
	2.3.1 Plan
	2.3.2 Code
	2.3.3 Build
	2.3.4 Test
	2.3.5 Release
	2.3.6 Deploy
	2.3.7 Operate
	2.3.8 Monitor

	2.4 Lifecycle

	3 CI/CD Strategy
	3.1 CI Strategy
	3.1.1 Container-based
	3.1.2 Environments with IaC
	3.1.3 Integration guidelines
	3.1.4 CI/CD Components
	3.1.5 Component-based Kustomize
	3.1.6 Manual deployment support
	3.1.7 Rancher for debugging support
	3.1.8 Local environment for testing
	3.1.9 Progressive Verification
	3.1.10 Automation

	3.2 CD Strategy
	3.2.1 Releases
	3.2.2 Public Assets Release
	3.2.3 Keycloak configuration
	3.2.4 Demo pilot
	3.2.5 Documentation
	3.2.6 Environments with IaC
	3.2.7 Automation

	4 Conclusions
	5 References
	APPENDIX A: Project Risks and impact in the DevOps Methodology
	APPENDIX B: Project Milestones from the DoA
	APPENDIX C: Integration files
	C.1 – Renovate mechanism
	C.2 – Semantic Versioning Configuration
	C.3 – Kustomize approach
	C.4 – Docker compose approach
	C.5 – CI/CD Examples

