
DRAFT

Deliverable D1.7

EMERALD Integrated solution – v1

Editor(s): Iñaki Etxaniz

Responsible Partner: TECNALIA Research & Innovation

Status-Version: Final-v1.0

Date: 30.04.2025

Type: Other (SW)

Distribution level (SEN, PU): PU

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 46

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: EMERALD Integrated solution – v1

Due Date of Delivery to the EC 30.04.2025

Workpackage responsible for the
Deliverable:

WP1 - Concept and methodology of EMERALD

Editor(s): Iñaki Etxaniz (TECNALIA)

Contributor(s): FABA, TECNALIA, Fraunhofer, CNR, SCCH

Reviewer(s):
Nico Haas (Fraunhofer)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP1, WP2, WP3, WP4, WP5

Abstract: Initial integrated solution of the EMERALD audit suite

Keyword List: Architecture, Integration, CaaS, Docker, Kubernetes,
platform, API, environments, development, production

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
https://creativecommons.org/licenses/by-sa/4.0/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 46

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 11.02.2025 ToC defined TECNALIA

v0.2 25.02.2025 First draft version TECNALIA

v0.3 15.03.2025 Updated Sections 1 and 2 TECNALIA

v0.4 18.03.2025 Contributions by consortium partners
to Section 3

FABA, TECNALIA,
Fraunhofer, CNR, SCCH

v0.5 03.04.2025 Conclusions and Executive Summary.
Sent to QA review

TECNALIA

v0.6 14.04.2025 Addressed recommendations from QA
review. Sent to final review.

Fraunhofer, TECNALIA

v0.7 19.04.2025 Addressed recommendations from
final review

TECNALIA

v1.0 30.04.2025 Final version submitted to the
European Commission

TECNALIA

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 46

www.emerald-he.eu

Table of contents

Terms and Abbreviations .. 7

Executive Summary ... 8

1 Introduction ... 9

1.1 About this deliverable .. 9

1.2 Document structure ... 9

2 Integration Overview ... 10

2.1 Architecture Overview ... 10

2.1.1 Workflows.. 11
2.1.1 Design of the CI/CD Solution ... 13

2.2 Components Integrated in the EMERALD Framework v1 .. 13

2.3 Test Bed Environment ... 14

2.3.1 Container orchestration .. 16
2.3.2 Storage ... 17
2.3.3 Docker registry .. 17
2.3.4 Network ... 18
2.3.5 Dashboard ... 18
2.3.6 Certificates ... 19
2.3.7 Deployment view ... 19

2.4 Steps to Integrate a Component ... 20

2.5 Overall status of the integration .. 21

3 Integration of Components ... 25

3.1 Evidence Collectors .. 25

3.1.1 AI-SEC ... 25
3.1.2 AMOE ... 26
3.1.3 Clouditor-Discovery ... 28
3.1.4 Codyze ... 28
3.1.5 eknows-e3 ... 30

3.2 Evidence Assessment and Certification ... 31

3.2.1 TWS .. 31
3.2.2 MARI .. 34
3.2.3 RCM ... 34
3.2.4 Orchestrator .. 37
3.2.5 Evidence Store ... 40
3.2.6 Assessment .. 41
3.2.7 Evaluation .. 42

3.3 EMERALD UI ... 43

4 Conclusions .. 45

5 References ... 46

 List of tables

TABLE 1. COMPONENTS IN THE EMERALD FRAMEWORK V1 .. 13

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 46

www.emerald-he.eu

TABLE 2. INTEGRATION STATUS .. 21
TABLE 3. POINT-TO-POINT INTEGRATION STATUS .. 23
TABLE 4. INTEGRATION STATUS OF AI-SEC WITH OTHER EMERALD COMPONENTS 26
TABLE 5. INTEGRATION STATUS OF AMOE WITH OTHER EMERALD COMPONENTS 28
TABLE 6. INTEGRATION STATUS OF CLOUDITOR-DISCOVERY WITH OTHER EMERALD COMPONENTS 28
TABLE 7. INTEGRATION STATUS OF CODYZE WITH OTHER EMERALD COMPONENTS 29
TABLE 8. INTEGRATION STATUS OF EKOWS-E3 WITH OTHER EMERALD COMPONENTS 31
TABLE 9. INTEGRATION STATUS OF TWS WITH OTHER EMERALD COMPONENTS 33
TABLE 10. INTEGRATION STATUS OF MARI WITH OTHER EMERALD COMPONENTS 34
TABLE 11. INTEGRATION STATUS OF THE RCM WITH OTHER EMERALD COMPONENTS 37
TABLE 12. INTEGRATION STATUS OF ORCHESTRATOR WITH OTHER EMERALD COMPONENTS 40
TABLE 13. INTEGRATION STATUS OF EVIDENCE STORE WITH OTHER EMERALD COMPONENTS 41
TABLE 14. INTEGRATION STATUS OF ASSESSMENT WITH OTHER EMERALD COMPONENTS 42
TABLE 15. INTEGRATION STATUS OF EVALUATION WITH OTHER EMERALD COMPONENTS 43
TABLE 16. INTEGRATION STATUS OF EMERALD UI WITH OTHER EMERALD COMPONENTS 44

List of figures

FIGURE 1. EMERALD COMPONENTS .. 10
FIGURE 2. PARTICIPATION OF THE COMPONENTS IN THE EMERALD BLUEPRINT FOR AUDIT PREPARATION 12
FIGURE 3. MERGE REQUEST AND GENERIC CI/CD PIPELINES ... 13
FIGURE 4. INTEGRATION AND PRODUCTION ENVIRONMENTS IN THE EMERALD CAAS FRAMEWORK 14
FIGURE 5. URL NAMING CONVENTION FOR INTEGRATION/PRODUCTION ENVIRONMENTS 15
FIGURE 6. KUBERNETES CLUSTER INSTALLATION WITH RKE2 ... 16
FIGURE 7. LONGHORN DASHBOARD IN RANCHER... 17
FIGURE 8. EMERALD DOCKER REGISTRY ... 18
FIGURE 9. RANCHER DASHBOARD... 19
FIGURE 10. DEPLOYMENT DIAGRAM ... 20
FIGURE 11. COMPONENT INTEGRATION MAIN STEPS.. 21
FIGURE 12. EVIDENCE COLLECTORS IN THE EMERALD ARCHITECTURE ... 25
FIGURE 13. ASSESSMENT TOOLS IN THE EMERALD ARCHITECTURE ... 31
FIGURE 14. EMERALD UI IN THE ARCHITECTURE ... 43

List of listings

LISTING 1. AMOE API OVERVIEW .. 27
LISTING 2. TWS API ENDPOINTS FOR ACCOUNT MANAGEMENT ... 32
LISTING 3. TWS API ENDPOINTS FOR USERS MANAGEMENT .. 32
LISTING 4. TWS API ENDPOINTS FOR INFORMATION REGISTRATION .. 33
LISTING 5. TWS API ENDPOINTS FOR INFORMATION ACCESS .. 33
LISTING 6. TWS API ENDPOINTS FOR INTEGRITY VERIFICATION ... 33
LISTING 7. MARI API ENDPOINTS FOR MAPPING .. 34
LISTING 8. RCM API ENDPOINTS FOR SCHEMA INFORMATION .. 35
LISTING 9. RCM API ENDPOINTS FOR CONTROL INFORMATION ... 36
LISTING 10. RCM API ENDPOINTS FOR METRIC INFORMATION ... 36
LISTING 11. RCM API ENDPOINTS FOR SIMILAR CONTROL RESOURCE ... 36
LISTING 12. RCM API ENDPOINTS FOR QUESTIONNAIRE RESOURCES ... 37
LISTING 13. ORCHESTRATOR API ENDPOINTS FOR ASSESSMENT RESULTS ... 38
LISTING 14. ORCHESTRATOR API ENDPOINTS FOR METRICS .. 38
LISTING 15. ORCHESTRATOR API ENDPOINTS FOR TARGETS OF EVALUATION .. 39

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 46

www.emerald-he.eu

LISTING 16. ORCHESTRATOR API ENDPOINTS FOR HANDLING CERTIFICATES .. 39
LISTING 17. ORCHESTRATOR API ENDPOINTS FOR CERTIFICATES (PUBLICLY AVAILABLE) 39
LISTING 18. ORCHESTRATOR API ENDPOINTS FOR CATALOGUES .. 40
LISTING 19. ORCHESTRATOR API ENDPOINTS FOR AUDIT SCOPES ... 40
LISTING 20. EVIDENCE STORE API ENDPOINTS .. 41
LISTING 21. ASSESSMENT API ENDPOINT FOR EVIDENCE ... 42
LISTING 22. EVALUATION API ENDPOINTS.. 42

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 46

www.emerald-he.eu

Terms and Abbreviations

AI Artificial Intelligence

AI-SEC AI Security Evidence Collector

AIC4 AI Cloud Service Compliance Criteria Catalogue

AMOE Assessment and Management of Organizational Evidence

API Application Programming Interface

AWS Amazon Web Services

BSI Bundesamt für Sicherheit in der Informationstechnik

CaaS Compliance-as-a-Service1

CI/CD Continuous Integration / Continuous Delivery

CLI Command Line Interface

CM Compliance Manager

CSP Cloud Service Provider

EC European Commission

EUCS European Cybersecurity Certification Scheme for Cloud Services

GA Grant Agreement to the project

GB GigaByte

gRPC Google Remote Procedure Call

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IAM Identity and Access Management

IaC Infrastructure as Code

IP Internet Protocol

JSON JavaScript Object Notation

KR Key Result

MARI Mapping Assistant for Regulations with Intelligence

ML Machine Learning

MS Milestone

NLP Natural Language Processing

OSCAL Open Security Controls Assessment Language

OS Operating System

RAM Random Access Memory

RBAC Role-Based Access Control

RCM Repository of Controls and Metrics

REST Representational State Transfer

RKE Rancher Kubernetes Engine

SSL Secure Sockets Layer

TWS Trustworthiness System

UI/UX User Interface / User Experience

URL Uniform Resource Locator

VCS Version Control System

VM Virtual Machine

WP Work Package

1 Please note that in previous deliverables and in the DoA, the term Certification-as-a-Service was used to
stand for CaaS. Compliance has now been introduced to clarify that EMERALD can be used to assess both
normative models and internal organizational models.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 46

www.emerald-he.eu

Executive Summary

The deliverable D1.7 presents the initial integrated solution of the EMERALD framework, which
includes the integration of the components developed in the project's technical work packages.
This document accompanies the software deliverable and provides an overview of the
integration approach, the status of the integration, and the components involved.

This deliverable is related to Work Package 1 (WP1), which focuses on the project's concept and
methodology. The integrated solution is a crucial part of the project as it enables collaboration
and communication between the different components developed in other work packages.

The integration approach is described first. The integration of the components is based on two
main pipelines that automate it: the first one builds the project, creating the Docker images and
pushing them to the Artifactory. The second one deploys the components to the test bed
environment and verifies it. The test bed is composed by two environments: integration and
production and is based on OpenStack Virtual Machines. A three-node Kubernetes cluster is
mounted on top of them.

An eight-step procedure is defined for the integration of a component in the EMERALD
framework. The status of the integration of each component is provided, including the APIs
published, and the interconnection with the rest of components.

The main results of this deliverable include the development of an initial prototype of the
EMERALD framework; the implementation of an integration strategy that allows collaboration
between components; the deployment of components in the integration and production
environments; and the documentation of the integration status of each component, providing
a basis for future improvements and developments.

Future related work in the project will focus on the continuous integration of the EMERALD
framework, including new releases with more functionalities and feedback from the users of the
first version of the framework. This work will be reflected in a second version of the deliverable,
D1.8, scheduled for month 30 of the project, which will include the updated status of the
integration of the EMERALD components.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 46

www.emerald-he.eu

1 Introduction

1.1 About this deliverable

This is the companion document of the software deliverable D1.7, which aims to have an initial
prototype of the EMERALD Compliance-as-a-Service2 (CaaS) Framework that integrates the
components developed by the other technical work packages. This first version of the integrated
solution corresponds to the Milestone MS3 – Integrated Audit Suite v1 and is mainly based on
the version v1 of the EMERALD components (M12), although some additional development
made until M15 has also been included in some cases. All the referred software is available in
the project’s public Gitlab (https://git.code.tecnalia.dev/emerald/public).

The document includes first an overview of the integration approach, to provide the reader an
overview of what components are integrated, where and how, and the status of the overall
integration task. It also describes the hardware equipment used to setup the test bed3, the
resources needed for the installation, and the configuration. The methodology through which a
component is integrated in the framework is introduced as well. The document also includes the
description of the main workflow in several scenarios and briefly describes the CI/CD solution
that has been implemented to support the development and integration activities of the
EMERALD framework. Finally, the document provides a detailed overview of the current status
of the integration of all components of the EMERALD framework.

A second version of the deliverable is planned for month 30 of the project. This second version
will incorporate advancements and improvements made in the time between the two releases.
It is expected that some of the improvements will come from user feedback, testing, and
discussions on the current version.

1.2 Document structure

The remainder of the document is organized as follows:

Section 2 presents a general description of the integration strategy and tools. It gives an
overview of the EMERALD CaaS framework, the resources used for the test bed environments,
the integration steps for each component, and the CI/CD implementation supporting the
integration of the EMERALD framework. An overall integration status is also provided.

Section 3 provides in more detail the integration status of each EMERALD component, in terms
of the connection with other components.

Section 4 presents the conclusions, including a summary of the main outcomes of the
deliverable.

2 Please note that in previous deliverables and in the DoA, the term Certification-as-a-Service was used to
stand for CaaS. Compliance has now been introduced to clarify that EMERALD can be used to assess both
normative models and internal organizational models.
3 A “Test Bed” refers to the setup where the testing activities take place. It includes the combination of
hardware, software, network configurations, and other necessary components that provide the
infrastructure which aims to simulate the real-world conditions under which the software will operate.
(see more at https://testingfundamental.com/test-bed)

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/
https://testingfundamental.com/test-bed

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 46

www.emerald-he.eu

2 Integration Overview

The integration strategy that has been defined is aimed at two main audiences: developers and
end-users. On the one hand, it should provide means for developers to:

• Finetune the configuration of the deployment: parameters, auxiliary services, IAM
configuration, ingress configuration, etc.

• Be able to debug a component behaviour, either by accessing to the logs or login into
the container that runs the component.

• Have rights to destroy their components and deploy again with changes or fixes.

• Automatically deploy new versions of their components as they are released.

On the other hand, the end-users, impersonated by the pilots, should be supported providing:

• An easy-to-deploy CaaS framework that facilitates on premise installation.

• A stable release that provides some guaranties of supporting the base workflows.

• A production environment to test the latest version of the framework, or to be used by
pilots for demonstration purposes.

2.1 Architecture Overview

Figure 1 shows a general view of the EMERALD components and the data flow, as defined in
D1.2 [1]. The colour indicates the component function in the framework, while the dashed/full
lines denote pull/push of data.

Figure 1. EMERALD Components

The following evidence collectors (in orange) collect different forms of data and extract evidence

that is then shared in the EMERALD framework:

• AMOE – Assessment and Management of Organisational Evidence – extracts evidence
from policy PDF documents. The component stores the uploaded files, as well as
relevant metadata related to the documents and metrics.

• Codyze is a static source code analysis tool which analyses source code of applications
comprising cloud services and assesses security-relevant implementation details
according to specified security requirements.

• eknows-e3 contributes to increase the coverage of code-related security requirements
by extracting evidence from source code files collected from the cloud service

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 46

www.emerald-he.eu

environment. It offers language-independent static codes analysis as well as business
rule extraction.

• AI-SEC is an evidence collection tool that extracts various security and robustness
information from AI models.

• Clouditor-Discovery is an evidence gathering tool which extracts cloud configurations
for different cloud resources (e.g., virtual machines, storage, networks) from different
cloud providers via API calls.

The following evidence assessment and compliance components (in green) are the next step in

the EMERALD workflow:

• The Evidence Store functions as a centralized repository for storing evidence from the
evidence collector components during the compliance process. It utilizes a graph-based
database to organize and manage evidence in an efficient and accessible manner.

• The Evaluation component is responsible for combining assessment results of individual
metrics relevant to a specific control of a certification scheme to create an evaluation
result for this control.

• The Assessment component is responsible for assessing the evidence and providing the
Orchestrator with assessment results. It calculates the assessment results using the
metrics provided by the Repository of Controls and Metrics (RCM).

• The Orchestrator’s main purpose is to hold all dynamic information about the current
audit process, such as the target of evaluation, Assessment Results and the Compliance
state. It includes the compliance graph, providing a snapshot of the target of
evaluation’s state.

• The Trustworthiness System (TWS) component ensures that all actions and data within
the compliance process are tamper-proof and verifiable. It securely stores the
information and associated metadata of evidence and assessment results on a general-
purpose blockchain network.

• The Mapping Assistant for Regulations with Intelligence (MARI) component is an
intelligent system using AI techniques and NLP processing to select suitable metrics for
demonstrating compliance with certification schemes. It can also associate security
controls of two different certification schemes.

• The Repository of Controls and Metrics (RCM) component serves as a smart catalogue
of controls and metrics. The repository supports different schemes, with the
corresponding categorization. It also provides import/export mechanisms to facilitate
the reuse and composition of catalogue elements.

Finally, there is the User Interface component (in blue), that is key to implement the business

cases for the different user roles in EMERALD:

• The EmeraldUI wraps all the components functionality in a unique User Interface. It calls
the APIs provided by the components to interchange information and present it to the
users.

2.1.1 Workflows

The work processes for the first version of the EMERALD framework have been reported for the
different pilots and user roles in the WP4 deliverables, where a number of process steps are
detailed and based on them, a blueprint for a universal application to implement EMERALD in
audit preparation workflows has been elicited.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 46

www.emerald-he.eu

A condensed version of these steps is provided below, which is then used to provide an overview
of the involvement of the components in the processes (for more detailed information, see D4.2
[2]):

• Phase 1 – Certification Scheme: The Compliance Manager (CM) uploads/creates a
certification scheme. The EMERALD framework automatically assigns metrics to controls.

• Phase 2 – Check controls and metrics: The CM checks/changes automatically assigned
metrics to a control.

• Phase 3 – Setup target of evaluation and Audit Scope: The CM needs to set up a new target
of evaluation; and the CM uploads the policy documents in EMERALD. The CM sets up a new
audit scope using the newly created target of evaluation and the respective certification
scheme.

• Phase 4 – Audit Scope: EMERALD will automatically collect evidence from a target of
evaluation for all controls and assigned metrics and will create assessment results. The CM
can browse through all controls/metrics and is able to filter between compliant and
noncompliant assessment and evaluation results.

• Phase 5 – Check controls and assessment results: The CM checks the corresponding
assessment results/evidence. If the check is ok, the CM can set the control/metric to
compliant or assign it to another person. If a control cannot be automatically assessed, the
person can add evidence manually and set the control/metric to compliant.

• Phase 6 – Reporting & Validation: EMERALD provides different types of outcomes, such as
Audit Report, Track Record of Evidence, Compliance Status, Categorization of the Service, and
Validity Check.

The components of the EMERALD framework are the basis for the implementation of these
workflows, providing their functionality when required, as presented in the Figure 2. There, we
can see how the RCM and MARI components participate in the early phases of the workflow.
The Orchestrator governs all steps. The Evidence extractors and the Assessment participate in
the intermediate phases, and the TWS, Evaluation and Evidence Store participate towards the
end of the process. The EMERALD UI, for its part, takes part in the entire workflow.

Figure 2. Participation of the components in the EMERALD blueprint for audit preparation

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 46

www.emerald-he.eu

2.1.1 Design of the CI/CD Solution

The initial CI/CD strategy for the EMERALD framework, which was outlined in D1.5 [3] and
completed in D1.6 [4], involves CI/CD practices designed for EMERALD that are implemented in
the build, deploy and security pipelines (see Figure 3). The project has adopted a Continuous
Integration and Continuous Deployment (CI/CD) strategy that, based in the source code of the
EMERALD components, detects each change and starts a chain of automated activities that ends
with the deployment of the component in the integration environment. This is done with the
help of the GitLab CI tool.

A version control system (VCS) manages the source code of the software so that different people
can work on the implementation and the history of changes can be tracked. For this purpose, all
EMERALD components are available in GitLab repositories.

Each Merge Request (MR) of the code in the Gitlab project triggers a set of actions (code
compilation, container image build, unit tests) whose results determine whether the MR will be
finally merged (see Figure 3). Later, integration test on the entire EMERALD framework will
ensure that the components work in tandem, i.e., they can be installed, run and used together
following the user-defined workflows.

In the EMERALD project we have defined two main pipelines, Component build, and CaaS
Framework deployment. The “Component build” pipeline automates building the project,
creating the Docker image and pushing it to the Artifactory. It can also include different
functional and non-functional validation activities. The “CaaS Framework deployment” pipeline
will automatically deploy the component to the integration environment and then verify it to
determine if it is stable enough to be promoted into the production environment.

Figure 3. Merge Request and generic CI/CD pipelines

2.2 Components Integrated in the EMERALD Framework v1

The components involved in the integration of the first version of the EMERALD framework are
those that were available at month 12 of the project. These components are listed in Table 1,
together with their respective Key Results (KR) and the deliverables in which they are described.

Table 1. Components in the EMERALD framework v1

Component name Key Result Deliverable

AI-SEC KR5 D2.6 [5]

AMOE - Assessment and Management of Organisational Evidence KR2 D2.4 [6]

Clouditor-Discovery KR1 D2.8 [7]

Codyze KR1 D2.2 [8]

eknows-e3 KR1 D2.2 [8]

TWS - Trustworthiness System KR7 D3.3 [9]

MARI - Mapping Assistant for Regulations with Intelligence KR3 D3.3 [9]

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 46

www.emerald-he.eu

Component name Key Result Deliverable

RCM - Repository of Controls and Metrics KR7 D3.3 [9]

Orchestrator KR4 D3.3 [9]

Evidence Store KR2 D3.3 [9]

Assessment KR4 D3.3 [9]

Evaluation KR4 D3.3 [9]

EMERALD UI KR6 D4.5 [10]

All components described in this deliverable (except EMERALD UI) use interfaces for integration
that follow the well-known gRPR4 or REST5 API practices and are described in the OpenAPI6
format. The interfaces themselves and the interaction with them are described in Section 3. The
EMERALD UI, in turn, is a web user interface component that uses the components’ APIs to
interact with them.

Apart from the components developed in the project, the EMERALD Framework also requires
an Identity and Access Management (IAM) solution to manage users and roles, and to secure
the communication among components. In EMERALD, we implement a Role Based Access
Control (RBAC) along the components, where the Orchestrator is a central piece assigning access
to the Targets of Evaluation to the right users. We have chosen Keycloak7 as open-source IAM
solution for the project.

2.3 Test Bed Environment

The EMERALD CaaS Framework is supported by two different environments: Integration and
Production (see Figure 4). The components are first deployed in the Integration environment in
containerized form. Once the integration tests have been passed, the components are promoted
to the Production environment.

Figure 4. Integration and Production environments in the EMERALD CaaS framework

4 https://grpc.io/
5 Representational State Transfer (REST) is an architectural style for distributed hypermedia systems.
More information is available at https://restfulapi.net/
6 The OpenAPI Specifications provide a formal standard for describing HTTP API. More information is
available at https://www.openapis.org/
7 https://www.keycloak.org/

http://www.emerald-he.eu/
https://grpc.io/
https://restfulapi.net/
https://www.openapis.org/
https://www.keycloak.org/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 46

www.emerald-he.eu

The test bed is composed by several Virtual Machines (VM) located in the server infrastructure
of TECNALIA. The environments are built in a three-node Kubernetes8 cluster over an
OpenStack9 platform.

The Virtual Machines (VMs) of the Kubernetes nodes (named k8so01-emerald, k8so02-emerald,
and k8so03-emerald) share the same specifications:

RAM: 16GB
Cores: 8
HD Disk: 200GB + 200GB
OS: Ubuntu 24.04

These specifications can be scaled up as needed. Further VMs can also be added to the
Kubernetes cluster on-demand, according to the needs of the project.

The access to the virtual machines is provided via SSH10 (Secure Shell) protocol, using digital
certificates through a bastion host11. The REST API exposed by each component is reachable
from the Internet using this URL naming convention:

<component>.<environment (dev or prod)>.emerald.digital.tecnalia.dev

where dev/prod refer to integration/production environment, respectively. The convention is
depicted in Figure 5. For example, if the user needs to refer to the API exposed by the RCM
component running in the Kubernetes production environment, it will be addressed as
rcm.prod.emerald.digital.tecnalia.dev.

Figure 5. URL naming convention for integration/production environments

When selecting technologies for the testbed, we prioritised those close to the production state
of practices. To simplify the installation and operation of Kubernetes, we used Rancher
Kubernetes Engine (RKE212), an open-source, enterprise-ready Kubernetes distribution, focused
on the security and compliance within the U.S. Federal Government sector. Using RKE2, we have
deployed a high availability configuration (see Figure 6), where all nodes are configured as
master and worker and share a virtual IP (VIP). This VIP is associated with the project testbed
host domain *.emerald.digital.tecnalia.dev.

8 https://kubernetes.io/docs/home/
9 https://www.openstack.org
10 https://www.ssh.com/academy/ssh/protocol
11 https://en.wikipedia.org/wiki/Bastion_host
12 https://docs.rke2.io/

http://www.emerald-he.eu/
https://kubernetes.io/docs/home/
https://www.openstack.org/
https://www.ssh.com/academy/ssh/protocol
https://en.wikipedia.org/wiki/Bastion_host
https://docs.rke2.io/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 46

www.emerald-he.eu

We have followed an Infrastructure as Code (IaC) approach for the deployment. For the creation
and configuration of the cluster we have used OpenTofu13 and Ansible14 technologies. OpenTofu
is used to create the nodes, networks, network interfaces, and security groups among other
infrastructural elements. Ansible is used to configure the nodes with the software packages
required to implement the Kubernetes cluster. The IaC files are also under a configuration
management process, in the Gitlab repository of the project. The usage of IaC provides several
advantages to the project management:

• Allows the redeployment of the cluster from scratch, if we need to migrate.

• Simplifies the horizontal scalation of the Kubernetes , if more capacity is required.

• Reusable by pilots, in case they have similar infrastructure.

2.3.1 Container orchestration

The EMERALD framework functionalities are made up by the collaboration of micro-services,
which communicate each other through APIs, are packaged in docker images and run in
containers. Kubernetes orchestrates all these containers in a virtual environment running in a
highly available cluster.

We also use an IaC approach based on Kustomize15 to describe the deployment and
collaboration of all components of the EMERALD project. The container orchestration is stored
in a separate Gitlab repository of the project named “CaaS Framework”. The repository contains
a folder with the details of the deployment of the individual components (called components),
and other folders that describe the environments: integration and production.

Figure 6. Kubernetes cluster installation with RKE2

13 https://opentofu.org
14 https://www.ansible.com
15 Kustomize traverses a Kubernetes manifest to add, remove or update configuration options without
forking. More information is available at https://kustomize.io/

http://www.emerald-he.eu/
https://opentofu.org/
https://www.ansible.com/
https://kustomize.io/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 46

www.emerald-he.eu

2.3.2 Storage

The micro-services can store their data in an easy and secure way thanks to the configuration of
a distributed filesystem provided by Longhorn16. Indeed, each node of the cluster provides 200
GB of storage, managed by Longhorn and is exposed as a single, unified cluster filesystem. Thus,
the data is replicated across the three nodes, and a total of 989 GB fault-tolerant and high
availability of storage are assured, as shown in Figure 7.

Figure 7. Longhorn dashboard in Rancher

2.3.3 Docker registry

The micro-services running on the Kubernetes cluster are packaged in Docker images and stored
in a private Docker Registry running in the TECNALIA infrastructure’s Artifactory17. To access the
Docker Registry, a Kubernetes secret has been created with the credentials. This allows
Kubernetes to pull the micro-service images and then run them on the cluster.

The images are pushed to the Docker registry by the GitLab CI/CD pipelines in the following URL
according to the structure agreed for the project, as shown in Figure 8.

artifact.tecnalia.dev/ui/native/emerald-docker-dev-local/<component>/

16 Longhorn is an open-source, cloud-native distributed storage solution for delivering block storage
persistent with low requirements and overhead. For more details see https://rook.io/docs/rook/v1.8/
17https://jfrog.com/artifactory/

http://www.emerald-he.eu/
https://rook.io/docs/rook/v1.8/
https://jfrog.com/artifactory/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 46

www.emerald-he.eu

Figure 8. EMERALD Docker registry

2.3.4 Network

On the Kubernetes cluster, a nginx18 service is configured as a proxy to redirect all the requests
to the correct micro-service component. The binding between the nginx service and the public
IP is setup with KubeVip19, a network load-balancer that associates the public IP to the nginx
service and uses standard routing protocols to make available (part of) the network behind the
Kubernetes cluster. It is essential for the EMERALD cluster because, unlike a public cloud
provider cluster, nginx has no load balancer, and Kubernetes does not provide it by itself.

2.3.5 Dashboard

We have two accounts in Kubernetes, with different permissions: one that has access to all
cluster resources and to the administration options (“admin”), and one that has the permissions
restricted to the integration and production namespaces (“emerald_developer”).

Rancher provides a web-based dashboard for the Kubernetes cluster (see Figure 9). It is helpful
to deploy containerised applications to a Kubernetes cluster, troubleshoot them, and manage
cluster resources.

18 https://www.nginx.com/
19 https://kube-vip.io/

http://www.emerald-he.eu/
https://www.nginx.com/
https://kube-vip.io/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 46

www.emerald-he.eu

Figure 9. Rancher Dashboard

2.3.6 Certificates

Access to the Dashboard is secure via HTTPS. The certificates are installed using Cert-Manager20.
Cert-Manager automates the provisioning of certificates and provides a set of custom resources
to issue certificates and attach them to services. EMERALD secures web apps and APIs with SSL
certificates from Let’s Encrypt21. We installed Cert-Manager using the manifest file, created an
issuer that uses the Let’s Encrypt API for the Dashboard domain and exposed it over HTTPS. The
Dashboard is exposed over HTTPS at the address:
https://k8so.emerald.digital.tecnalia.dev/dashboard/.

2.3.7 Deployment view

The EMERALD CaaS Framework is deployed on the Kubernetes cluster. As we explained in
Section 2.3, the cluster is currently composed of three nodes. Figure 10 shows a deployment
diagram of the solution, showing all components deployed (in blue). Each component is
composed by one or more containers, represented by artifacts (white boxes).

20 https://cert-manager.io/docs/
21 https://letsencrypt.org/

http://www.emerald-he.eu/
https://k8so.emerald.digital.tecnalia.dev/dashboard/
https://cert-manager.io/docs/
https://letsencrypt.org/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 46

www.emerald-he.eu

Figure 10. Deployment diagram

Figure 10 represents the deployment at a given time. The distribution of the artifacts among the
nodes is managed by Kubernetes, and it is possible that a single component has its artifacts
distributed on different nodes (e.g., AMOE or RCM). This distribution is automatically modified
by Kubernetes attending to its own performance and resources management criteria.

The Codyze, eknows-e3 and AI-SEC components are not present in Figure 10, as they are
evidence extractors that are intended to run in a separate environment, alongside a GitLab
runner that gives them access to the files to be analysed.

2.4 Steps to Integrate a Component

Once the Test Bed environment has been installed and properly configured, the next step is the
deployment of all components in the cluster.

To better organize the integration, we have adopted the following methodology, which presents
the actions to be taken until the complete release of the EMERALD Framework. Figure 11 shows
the main steps in the integration and deployment of a component22:

1. The source code of each component must be uploaded to the private GitLab repository.
2. Once finalised and tested, each component must be containerised into a Docker image,

so it must provide dockerfile(s) in the GitLab repository, which help automate the
building of the images after any changes in the code.

3. The Docker image must be made available on the private docker registry Artifactory.
4. The configuration and side services for each component should be specified in the CaaS

Framework repository.
5. The configuration must be manually tested to perform standalone, point-to-point, and

workflow tests, to verify that each component is deployed correctly, communicates with
its peers, and the workflows (described in section 2.1.1) are correctly implemented.

6. If the tests are passed, the release can be merged with the integration environment.
7. Automated integration tests are performed in the integration environment.
8. If the tests are passed, the version is promoted to the production environment and a

new release is created.

22 The integration of non-open source component skips steps 1 and 2.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 46

www.emerald-he.eu

Figure 11. Component integration main steps

The integration plan includes three phases that will be completed in months M18, M30, and
M34, respectively. Currently, we have performed the first round, where the integration of
components has been carried out manually by each partner.

During this first round, WP1 delivered a workshop to the rest of the consortium to introduce the
main concepts of Docker and Kubernetes and explained the integration steps. All components
were developed concurrently, and their code history was tracked using the GitLab version
control system. Besides, a semantic release numbering was implemented to track the progress
of the project. All components are containerised and have been deployed on the project-internal
integration server. Dockerfile recipes are available to easy recreate the integration environment.
All REST API endpoints are exposed on a common network to enable communication between
components. The EMERALD Framework is installed entirely using Kubernetes manifests.

In phases 2 and 3 we expect to have the deployment fully automated, governed by the CI/CD
pipelines. We will also set-up the production environment, with a stable version always available
in it. And finally, the installation will be implemented in the pilots.

2.5 Overall status of the integration

This section provides an overview of the integration status of the components in the EMERALD
framework. Table 2 shows the steps to be carried out for the integration of each component, as
well as their degree of completion. Section 3 provides more details on the level of integration of
each component.

Table 2. Integration status

Component License
Gitlab

Repo

Public

Repo
README

Docker

Images

OpenAPI

spec
 K8s file

Deploy

pipeline

Deployed

(integr.)

Integration

URL

AMOE √ (Apache) √ √ √ √ √ √ √ √ URL

MARI √ (Apache) √ √ √ √ √ √ √ √ URL

RCM √ (Apache) √ √ √ √ √ √ √ √ URL

TWS * √ (Propietary) N/A N/A √ √ √ √ √ √ URL

Assessment √ (Apache) √ √ √ √ √ √ √ √ URL

Clouditor-Discovery √ (Apache) √ √ √ √ N/A √ √ √ URL

Evaluation √ (Apache) √ √ √ √ √ √ √ √ URL

Evidence Store √ (Apache) √ √ √ √ √ √ √ √ URL

Orchestrator √ (Apache) √ √ √ √ √ √ √ √ URL

Codyze √ (Apache) √ √ √ X √ (CLI) N/A X X N/A

eKnows-e3 * √ (Apache, others) √ √ & N/A √ √ √ (CLI) N/A X X N/A

AI-SEC √ (Apache) √ √ √ X X N/A X X N/A

Emerald UI √ (Apache) √ √ √ √ √ √ √ √ URL

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 46

www.emerald-he.eu

The starting point of the integration process is the source code of the components, which has
been uploaded to the public GitLab repository23 (except for two of them -TWS and eknows-e3–
which are not open source licensed). The repository of each component contains a dockerfile.
The respective images created have been uploaded to the Docker repository in Artifactory.

The next step is to deploy the images on the Kubernetes cluster. For this, several manifest files
have been developed for each component, depending on their nature (pods, services, volumes,
etc.). In the early stages of the development, the integration process allowed a manual
deployment using kustomize and kubectl24. This allows for the identification of
bugs/adjustments in an agile way, without waiting for an automated deployment process to be
completed. This process has been further automated through the GitLab CI pipelines, which are
detailed in D1.6 [4].

The last column of Table 2 indicates if the component is available in the integration environment.
All of them are deployed, excepting those that are not to be integrated in the CaaS Framework
but in the pipeline to analyse files (i.e., Codyze, eknows-e3, and AI-SEC).

The final and fundamental part of the integration has to do with the communication among
components, which is done through the APIs defined and developed in EMERALD. Besides the
details provided in the third section for each component, Table 3 presents a consolidated view
of the current status of the interaction of each component with the others. The status has been
categorized into several stages25, reflecting the progress made in integrating the component into
the EMERALD Framework:

• Not Started: The integration process has not yet begun.

• Developing API: The component is currently in the process of developing its API. This
stage involves defining how the component will interact and its implementation.

• API Finished: The API development has been completed and is ready for testing.

• Tested Locally: The component has undergone local testing, verifying its functionality in
isolation. While it works as intended on its own, it has not yet been tested in conjunction
with other components.

• Connected: The component has successfully established connections with other
components. Data exchange can occur, but further testing is needed to ensure full
compatibility.

• Testing: The integration of the component with others is currently being tested. This
phase involves checking the data flow between the components to identify and fix any
issues that may arise.

• Integrated: The component has been fully integrated into the framework. It has passed
the necessary tests and is functioning as intended, interacting seamlessly with other
components in the EMERALD system.

Please note that in Table 3, the column “Component A” refers to the component that
implements the API and “Component B” is the component that invokes it.

23 https://git.code.tecnalia.dev/emerald/public
24 A command line tool for communicating with a Kubernetes cluster's control plane, using the Kubernetes
API. See https://kubernetes.io/docs/reference/kubectl/ for details.
25 This categorization was first used in deliverable D3.5 [16]

http://www.emerald-he.eu/
https://git.code.tecnalia.dev/emerald/public/
https://kubernetes.io/docs/reference/kubectl/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 46

www.emerald-he.eu

Table 3. Point-to-point integration status

Component A Component B Status Comment

AI-SEC EMERALD UI Not started AI-SEC is currently in the tool testing
phase and has not yet started its
integration

AMOE Evidence Store Testing Waiting for Ontology and full
integration of new metrics based on
updated data model

AMOE RCM Tested locally /
Connected

Tested with initial API. Waiting for
adjustment to new metric data model
and inclusion of extended set of
metrics

AMOE Orchestrator Not started Waiting for updates to the
Orchestrator API

AMOE EMERALD UI Testing,
Connected

Collected files and extracted results.
Full implementation remains to be
tested. Also, extensive testing in
EMERALD integration setup remains
to be done. The Keycloak
configuration needs to be updated for
a stable deployment and test setup.

Clouditor-Discovery Evidence Store Connected Testing pending

Codyze [CI/CD] * Tested locally Codyze is integrated as a CI/CD
component. Currently, a proof-of-
concept integration for Codyze-
Provenance exists for GitLab. For
Codyze-Compliance, a similar
integration is planned.

Codyze Evidence Store Tested locally We can send pieces of evidence.
However, they are not fully filled.

Codyze TWS Not started Currently postponed in favour of the
integration with Evidence Store and
awaiting final API specification of
TWS.

eknows-e3 [CI/CD] * Tested locally The CI/CD component uses eknows-e3
to extract and save evidence in the
Evidence Store. A demo showcases
how the eknows-e3 component can
be integrated. Integration tests are
currently being developed.

eknows-e3 Evidence Store Testing Communication is implemented,
integration tests are in development.

TWS EMERALD UI Developing API Currently updating the API details due
to the migration process.

TWS Evidence Store Developing API Currently updating the API details due
to the migration process.

TWS Evidence collectors Developing API Currently updating the API details due
to the migration process.

MARI RCM Developing API New API defined .

RCM EMERALD UI Developing API Updating / extending the API.

RCM Clouditor-
Orchestrator

Developing API Changes are needed due to data
model updates.

RCM MARI Developing API New mapping API already defined.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 46

www.emerald-he.eu

Component A Component B Status Comment

RCM AMOE Connected Changes are needed due to data
model updates.

Orchestrator Assessment API Finished -

Orchestrator EMERALD UI API finished Requires coordination with WP4 and
testing.

Orchestrator RCM Developing API -

Orchestrator Assessment Connected Testing pending.

Orchestrator Evaluation Connected Testing pending.

Evidence Store Assessment Connected Testing pending.

Evidence Store Orchestrator Connected Testing pending.

Evidence Store AMOE Testing -

Evidence Store Codyze Tested locally -

Evidence Store eknows-e3 Testing -

Evidence Store AI-SEC Testing -

Evidence Store Clouditor-Discovery Connected Testing pending.

Assessment Evidence Store Connected Testing pending.

Assessment Orchestrator Connected Testing pending.

Assessment TWS Developing API To be tested.

Evaluation Orchestrator Connected Testing pending.

EMERALD UI AMOE Connected Testing remains to be done. Only a
subset of the endpoints has been fully
integrated yet.

EMERALD UI Orchestrator Developing API Waiting for Orchestrator results.

EMERALD UI RCM Tested locally Waiting for updates to the API.

EMERALD UI TWS Not started Discussion for endpoints and
integration needed.

The information reflected in Table 3 can be taken as a basis for a consolidated status of the
point-to-point integration. If “Not started” is considered as 0% progress, and “Integrated” is
considered as 100% progress (with “Tested locally” being 50%), an approximation to the global
value can be calculated, resulting in 40% at the end of this point-to-point integration at M18.
The majority of the 38 elements in the table are in the “Connected” status (13), followed by the
“Developing API” status (11).

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 46

www.emerald-he.eu

3 Integration of Components

This section provides more details on the integration status of each EMERALD component. The
components are grouped into three groups: (i) Evidence Collectors; (ii) Evidence Assessment and
Certification; and (iii) User Interface.

Each component is introduced by a short description, followed by the expected behaviour
concerning inputs and outputs. Next, the APIs published by the component, or the Command
Line Interfaces (CLI), if applicable, are listed. Finally, a status of the integration with other
components is provided.

3.1 Evidence Collectors

Evidence collectors –highlighted in the Figure 12 below– are the components in charge of
collecting different forms of data from the targets of evaluation and providing them as evidence
that is then processed in the EMERALD framework to decide on compliance.

Figure 12. Evidence collectors in the EMERALD architecture

3.1.1 AI-SEC

AI-SEC is an evidence collector designed to extract relevant information from machine learning
models. Based on the Criteria Catalogue for AI Cloud Services (AIC4) [11], AI-SEC extracts various
characteristics of machine learning models, e.g. robustness, privacy levels and explainability. AI-
SEC establishes a process that contains methods for extracting these features. These methods
are typically applicable to both image and language models.

3.1.1.1 Expected behaviour (inputs/outputs)

The expected input should be the machine learning model and its (partial) training data, while
the output will be the computed evidence.

AI-SEC is connected to the EMERALD UI and the Evidence Store:

• EMERALD UI: It connects to AI-SEC for uploading, downloading, viewing, and deleting
policy documents. AI-SEC will be controlled by the user via the EMERALD UI, which
connects to the API.

• Evidence Store: Evidence will be forwarded to the Evidence Store.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 46

www.emerald-he.eu

3.1.1.2 Published APIs

AI-SEC does not have any published APIs.

3.1.1.3 Integration Status

Table 5 provides the status of the connection to the EMERALD UI and the Evidence Store.

Table 4. Integration status of AI-SEC with other EMERALD components

Component Status Comment

EMERALD UI Not started AI-SEC is currently in the tool testing phase and has
not yet started its integration tasks.

Evidence Store Not started AI-SEC is currently in the tool testing phase and has
not yet started its integration tasks.

3.1.2 AMOE

AMOE is an evidence collector that extracts relevant parts of policy documents. Based on the
meta data provided by the security metrics stored in the RCM, AMOE uses natural language
processing techniques and question answering to process the documents. AMOE offers an API
to upload documents and collect the processed outputs. Furthermore, the extracted results can
be reviewed and forwarded to the EMERALD system. AMOE will be controlled via user actions
in the EMERALD UI, which connects to the AMOE API.

3.1.2.1 Expected behaviour (inputs/outputs)

AMOE is connected to the EMERALD UI, the Evidence Store, the Orchestrator and the RCM.

• RCM: AMOE retrieves data as input from the RCM (e.g. security metrics, security
controls).

• Orchestrator: AMOE also retrieves input from the Metric Implementation (such as
custom target values) and information about Cloud Services (audit scope, target of
evaluation) from the Orchestrator.

• Evidence Store: After a human review, the confirmed evidence results are forwarded to
the Evidence Store.

• EMERALD UI: The EMERALD UI connects to AMOE to upload, download, view, review,
or delete policy documents and extracted evidence. AMOE will be controlled by a user
via the EMERALD UI, which connects to the API.

3.1.2.2 Published APIs

The API endpoints of the AMOE are listed below.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 46

www.emerald-he.eu

Listing 1. AMOE API overview

3.1.2.3 Integration Status

AMOE has already been deployed on the Kubernetes cluster. Table 5 provides the current status
of the connection to the EMERALD UI, the Evidence Store, the Orchestrator and the RCM. AMOE
is ready to be adapted to the new APIs of the different components once they are implemented.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 46

www.emerald-he.eu

Table 5. Integration status of AMOE with other EMERALD components

Component Status Comment

Evidence Store Testing Waiting for Ontology and full integration of new
metrics based on the updated data model.

RCM Tested locally /
Connected

Tested with initial API. Waiting for adjustment to
new metric data model and inclusion of extended
set of metrics.

Orchestrator Not started Ready to implement, integrate and test parts of
the existing Orchestrator endpoints, while waiting
for updates from the Orchestrator API.

EMERALD UI Testing, Connected Collected files and extracted results. Full
implementation remains to be tested. Also,
extensive testing in EMERALD integration setup
remains to be done. The Keycloak configuration
needs to be updated for a stable deployment and
test setup.

3.1.3 Clouditor-Discovery

The Clouditor-Discovery is one of the evidence collectors in the EMERALD framework. As
described in D2.8 [7], the Clouditor-Discovery is responsible for discovering security-related
configurations from cloud resources, including Virtual Machines, Object Storage, and Network
interfaces. It is implemented for multiple CSPs like Azure, AWS and Kubernetes. An
implementation for OpenStack is now available as well. The collected runtime information is
mapped to the EMERALD evidence format and stored in the Evidence Store.

3.1.3.1 Expected behaviour (inputs/outputs)

The Clouditor-Discovery has only one connection, to the Evidence Store:

• Evidence Store: It receives the evidence with the security properties from the Clouditor-
Discovery.

3.1.3.2 Published APIs

The Clouditor-Discovery does not have any published API, nor any CLI command defined, as it
starts directly upon deployment.

3.1.3.3 Integration Status

The Clouditor-Discovery has already been deployed on the Kubernetes cluster. Table 6 provides
the current status of the connection to the Evidence Store.

Table 6. Integration status of Clouditor-Discovery with other EMERALD components

Component Status Comment

Evidence Store Connected -

3.1.4 Codyze

Codyze is a tool suite consisting of Codyze-Compliance and Codyze-Provenance. Codyze-
Compliance is a static software analysis tool that uses a code property graph (CPG) to represent
code properties as a language agnostic graph. Based on this graph representation, presence or
absence of specified code properties can be tested. Codyze-Compliance verifies through user-

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 46

www.emerald-he.eu

defined queries if the source code complies to security metrics. Codyze-Provenance supports
Codyze-Compliance by generating provenance and attestation reports. These reports link inputs,
such as source code files, to outputs, such as build artefacts, in a forgery-proof manner. As a
result, they enforce traceability from source to artefact with a strong link to evidence.

3.1.4.1 Expected behaviour (inputs/outputs)

Codyze integrates with a CI/CD system responsible for deploying new and updated cloud
services. Therefore, Codyze uses the source code repository of a cloud service as its input.
Through this repository, Codyze-Compliance has access to the source code that needs to be
evaluated for compliance. Codyze-Provenance integrates with the CI/CD definition through a
configuration-as-code approach, where CI/CD pipelines are configured through files hosted
together with the source code.

Codyze has only one connection, to the Evidence Store:

• Evidence Store: The generated pieces of evidence are sent to the Evidence Store. They
are annotated with the terms of the ontology enabling assessment by the Assessment.

3.1.4.2 Published CLIs

Codyze uses CLI based tools. These tools are executed as part of a CI/CD pipeline execution.
Common CLI parameters and options are the following:

Parameter / Option Description

--id <string> ID of the cloud service

--rules <path> Path to the rule set to be checked for compliance

--endpoint <url> URL to the Evidence Store

--oauth-endpoint <url> URL to an OAuth endpoint for authentication

--username <string> Username for authentication

--password <string> Password for authentication

--config <path> Path to a configuration file for Codyze

In addition to CLI parameters and options, a configuration file can be used to store the
corresponding values as part of the source code in the source code repository.

3.1.4.3 Integration Status

Codyze is integrated as a CI/CD component. Currently, a proof-of-concept integration for
Codyze-Provenance exists for GitLab (see Table 7). For Codyze-Compliance, a similar integration
is planned.

Table 7. Integration status of Codyze with other EMERALD components

Component Status Comment

Evidence Store Tested locally We can send pieces of evidence. However, they are not
fully filled, i.e., the ontology terms are missing for the
assessment.

TWS Not started Currently postponed in favour of integration with the
Evidence Store and awaiting final API specification of
TWS.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 46

www.emerald-he.eu

3.1.5 eknows-e3

The eknows-e3 evidence extractor is based on the software analysis platform eknows26 and
delivers required evidence to verify if an application source code complies to security metrics.
As described in D2.2. [8], eknows-e3, in contrast to Codyze, reuses prefabricated parsing,
analysis, and generation modules of the eknows platform and supports multi-language static
codes analysis.

The cornerstone of its implementation is a generic programming language-independent
representation of source code that can be reused across analysis and generation modules to
prepare suitable security-related evidence. Thereby, generic modules for the model-guided
symbolic execution of use case-specific conformity checks and fact extraction are extended. New
analyses will be added to break down high-level security controls from catalogues, such as EUCS
or BSI C5, into checkable source code properties, and new generation functions to create
evidence based on these source code properties and to integrate them into the ontology [12]
will be provided.

3.1.5.1 Expected behaviour (inputs/outputs)

The static analyser component sends and receives information to and from different sources:

• Source code repositories: eknows-e3 obtains technical evidence from the analysis of the
source code of Cloud applications. It is integrated in a CI/CD pipeline at the customer
side, which establishes the connection to relevant source code repositories.

• Evidence Store: Extracted evidence from source code files is mapped to the EMERALD
evidence format using the terms described in the Ontology. This evidence information
represents raw evidence and is delivered to the Evidence Store, where it is stored
according to the defined schema.

3.1.5.2 Published CLIs

The eknows-e3 component is integrated into a CI/CD pipeline and supports a CLI to start and
configure the analysis process (e.g., endpoint for evidence, authentication, file(s) to analyse,
etc.):

usage: eknows-evidence-extractor

 --clouditor.clientId <arg>

 --clouditor.clientSecret <arg>

 --clouditor.storeUrl <arg>

 --clouditor.tokenUrl <arg>

 --evidence.certificationTargetId <arg>

 --evidence.toolId <arg>

 --evidence.toolName <arg>

-f,--file <arg> file to analyze

3.1.5.3 Integration Status

The CI/CD component uses eknows-e3 to extract and store evidence in the Evidence Store.
eknows-e3 uses almost the same set of input parameters as the Codyze Provenance component.
It runs in a Docker container using the image which was built and pushed to Artifactory. Since
the component pulls out this image from the private EMERALD Artifactory, authentication is
needed. To do this, we generate JSON Base64 Authentication and set it as a variable

26 https://www.scch.at/software-science/projekte/detail/eknows

http://www.emerald-he.eu/
https://www.scch.at/software-science/projekte/detail/eknows

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 46

www.emerald-he.eu

DOCKER_AUTH_CONFIG in the repository we want to test. Currently, only one file can be
specified for extracting the evidence. However, it is planned to extend it to directory
specification in the future. Table 8 provides the current status of the connection to the Evidence
Store.

Table 8. Integration status of ekows-e3 with other EMERALD components

Component Status Comment

Evidence Store Testing Communication is implemented, integration tests are in
development.

A demo showcases how the eknows-e3 component can be integrated. Integration tests are
currently being developed.

3.2 Evidence Assessment and Certification

Evidence assessment and certification components –highlighted in Figure 13– are used for
storing, assessing and evaluating evidence. This group comprises the Orchestrator, that controls
the overall workflow, as well as complementary tools like the Repository, the Mapping Assistant
or the Trustworthiness System.

Figure 13. Assessment tools in the EMERALD architecture

3.2.1 TWS

The TWS ensures the trustworthiness, fairness, and transparency of the evidence and
assessment results stored in EMERALD, safeguarding their integrity and authenticity. Its primary
function is to facilitate secure registration and verification of proofs of integrity related to
evidence and assessment results, both from the Evidence Store as well as directly from the
evidence sources.

The TWS is supported by a blockchain network to ensure information security features like
integrity, trustworthiness, and transparency. To enhance usability, a Blockchain Viewer is also
included, making the system accessible to non-technicians. Additionally, an automatic evidence
verification service has been integrated to improve automation and facilitate seamless
integration within the EMERALD solution, eliminating the need for manual interaction.

3.2.1.1 Expected behaviour (inputs/outputs)

The TWS sends and receives information from different sources:

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 46

www.emerald-he.eu

• Assessment: The interaction with this component occurs in two ways:
o The Assessment component provides information (proofs of integrity) related

to evidence and assessment results to be recorded on the Blockchain.
o The automatic verification service requests the current values of evidence and

assessment results stored in EMERALD’s internal evidence storage to validate
their integrity against the information previously recorded on the Blockchain.

• Evidence collectors: Proofs of integrity for evidence can be directly provided from the
evidence collectors. In particular, Codyze will be considered as a proof of concept.

• EMERALD UI: The graphical interface of the TWS automatic verification service is
integrated into the EMERALD UI, allowing auditors to easily verify the trustworthiness
of evidence and assessment results, and determine their reliability.

3.2.1.2 Published APIs

The API endpoints of the TWS are listed below.

Listing 2. TWS API Endpoints for Account Management

Listing 3. TWS API Endpoints for Users Management

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 46

www.emerald-he.eu

Listing 4. TWS API Endpoints for Information Registration

Listing 5. TWS API Endpoints for Information Access

Listing 6. TWS API Endpoints for Integrity Verification

3.2.1.3 Integration Status

Currently, the TWS has been successfully deployed on the Kubernetes cluster. However, it has
been recently migrated from Quorum to the Alastria Blockchain network. This migration has
slightly delayed the integration process with other EMERALD components. Table 9 provides the
current state of the connections of the TWS with other components.

Table 9. Integration status of TWS with other EMERALD components

Component Status Comment

EMERALD UI Developing API Currently updating the API details due to the
migration process. Evidence Store Developing API

Evidence collectors
(Codyze)

Developing API

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 34 of 46

www.emerald-he.eu

3.2.2 MARI

The Mapping Assistant for Regulations with Intelligence (MARI) is an intelligent system for
compliance management. As described in D3.3 [9], its main functionality is to automatically
associate relevant metrics with controls and facilitate the mapping of controls across multiple
certification schemes. This automation significantly reduces manual effort and improves
performance in compliance management processes. The MARI is built as an NLP-based tool,
leveraging a sentence transformer model to generate vector embeddings that capture the
semantic meaning of controls and metrics. The associations between controls and metrics, as
well as between controls across different certification schemes, are then performed by
measuring the similarity between these embeddings in the vector space.

3.2.2.1 Expected behaviour (inputs/outputs)

The MARI exchanges information exclusively with the RCM.

• RCM: It sends the mapping requests to the MARI, including information about the
certification schemes and the metrics. Once the MARI performs the mappings, the
results are sent back to the RCM, which receives and stores them for further use.

3.2.2.2 Published APIs

The MARI provides two endpoints for mapping controls and metrics: the mapControls endpoint
that maps controls from a schema to another by evaluating a similarity threshold, actively
matching controls that meet the required standard; and the mapMetrics2Controls endpoint that
links metrics to the corresponding controls based on the same similarity principle.

Listing 7. MARI API Endpoints for mapping

3.2.2.3 Integration Status

The MARI has already been deployed on the Kubernetes cluster. MARI interacts exclusively with
the RCM through a predefined API. Table 10 provides the current state of connections of the
MARI with the RCM.

Table 10. Integration status of MARI with other EMERALD components

Component Status Comment

RCM Developing API New API defined

3.2.3 RCM

The Repository of Control and Metrics (RCM) is a smart catalogue of controls and metrics. As
described in D3.3 [9], the RCM supports multi-scheme and multi-level compliance and
incorporates the definition of the metrics used in EMERALD to obtain and assess evidence.

The RCM also provides mechanisms to update the catalogues and allow OSCAL-based [13]
import/export to facilitate the reuse and composition of the catalogue elements; stores the

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 35 of 46

www.emerald-he.eu

mapping of controls and metrics provided by the MARI component; and includes a self-
assessment questionnaire to assess EUCS [14] compliance.

3.2.3.1 Expected behaviour (inputs/outputs)

The RCM sends and receives information from different sources.

• Clouditor-Orchestrator: It retrieves information about schemes and metrics from the
RCM, which is then used to configure extractors and organize evidence.

• MARI: It receives the mapping requests, which include information about schemes and
metrics, from the RCM. The responses (mappings) are then sent back to the RCM, which
stores them for further use.

• EMERALD UI: When the user navigates through the content of the repository, the
EMERALD UI calls the RCM API. The information required is packed in JSON format in
the REST call and sent to the EMERALD UI for displaying. The same happens, when the
user creates new security schemes or fill in the self-assessment questionnaire.

• AMOE: It receives the definition of the security metrics that are used to extract and
evaluate evidence from policy documents from the RCM.

3.2.3.2 Published APIs

The API endpoints of the RCM component are listed below.

Listing 8. RCM API Endpoints for schema information

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 36 of 46

www.emerald-he.eu

Listing 9. RCM API Endpoints for control information

Listing 10. RCM API Endpoints for Metric information

Listing 11. RCM API Endpoints for similar control resource

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 37 of 46

www.emerald-he.eu

Listing 12. RCM API Endpoints for Questionnaire resources

3.2.3.3 Integration Status

The RCM has already been deployed on the Kubernetes cluster. Table 11 provides the current
state of connections of the RCM with other components.

Table 11. Integration Status of the RCM with other EMERALD components

Component Status Comment

EMERALD UI Developing API Updating / extending the API

Orchestrator Developing API -

MARI Developing API New API already defined

AMOE Connected Changes needed

3.2.4 Orchestrator

The Orchestrator is the central orchestration point in the EMERALD framework. As described in
D3.3 [9], the Orchestrator serves as a key element that manages the compliance process within
the EMERALD framework, linking various components together. This component is also
responsible for making the final compliance decision, assessing whether a target of evaluation
adheres to a specified security standard.

3.2.4.1 Expected behaviour (inputs/outputs)

The Orchestrator sends and receives information from different sources.

• EMERALD UI: It receives information from the Orchestrator to be displayed to the user,
e.g. audit scope or evidence.

• RCM: It provides the Orchestrator with catalogue and metric information.

• Assessment: Assessment results, as well as evidence, are sent by the Assessment to the
Orchestrator.

• Evaluation: For evaluating the compliance of controls of a security catalogue, the
Orchestrator sends assessment results to the Evaluation and gets the compliance status
of each control (i.e. the evaluation result).

• Evidence Store: The Orchestrator pulls evidence from it.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 38 of 46

www.emerald-he.eu

3.2.4.2 Published APIs

The API endpoints of the Orchestrator for handling assessment results and tools are listed below.

Listing 13. Orchestrator API endpoints for assessment results

Listing 14. Orchestrator API endpoints for metrics

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 39 of 46

www.emerald-he.eu

Listing 15. Orchestrator API endpoints for targets of evaluation

Listing 16. Orchestrator API endpoints for handling certificates

Listing 17. Orchestrator API endpoints for certificates (publicly available)

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 40 of 46

www.emerald-he.eu

Listing 18. Orchestrator API endpoints for catalogues

Listing 19. Orchestrator API endpoints for audit scopes

3.2.4.3 Integration Status

The Orchestrator has already been deployed on the Kubernetes cluster. Table 12 provides the
current state of connections of the Orchestrator with other components.

Table 12. Integration status of Orchestrator with other EMERALD components

Component Status Comment

EMERALD UI API finished Requires coordination with WP4 and testing.

RCM Developing API -

Assessment Connected -

Evaluation Connected -

Evidence Store Connected -

3.2.5 Evidence Store

The Evidence Store serves as a central repository for evidence collected from various evidence
collectors. It retrieves evidence from the evidence collectors, saves them in a Postgres database,
and forwards evidence to the Assessment and the TWS to improve the integrity of the evidence.
A detailed description can be found in the deliverables D3.3 [9] .

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 41 of 46

www.emerald-he.eu

3.2.5.1 Expected behaviour (inputs/outputs)

The Evidence Store sends and receives information from different sources:

• Assessment: It receives evidence from the Evidence Store for the assessment.

• Orchestrator: It receives evidence from the Evidence Store (and forwards it to the
EMERALD UI)

• AMOE: It sends evidence to the Evidence Store for storage.

• Codyze: It sends evidence to the Evidence Store for storage.

• eknows-e3: It sends evidence to the Evidence Store for storage.

• AI-SEC: It sends evidence to the Evidence Store for storage.

• Clouditor-Discovery: It sends evidence to the Evidence Store for storage.

3.2.5.2 Published APIs

The Evidence Store provides the following three endpoints for storing evidence, listing all
evidence and getting specific evidence, respectively.

Listing 20. Evidence Store API endpoints

3.2.5.3 Integration Status

The Evidence Store has already been deployed on the Kubernetes cluster. Table 13 provides the
status of the individual connections. The Postgres database is likely to be replaced by a graph
database in the future.

Table 13. Integration status of Evidence Store with other EMERALD components

Component Status Comment

Assessment Connected -

Orchestrator Connected -

AMOE Testing -

Codyze Tested locally Simple pieces of evidence are received.

eknows-e3 Testing -

AI-SEC Testing -

Clouditor-Discovery Connected -

3.2.6 Assessment

As described in D3.3 [9], the Assessment is tasked with assessing evidence according to specific
metrics established within the EMERALD framework.

3.2.6.1 Expected behaviour (inputs/outputs)

The Assessment sends and receives information from different sources:

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 42 of 46

www.emerald-he.eu

• Evidence Store: The Assessment receives evidence from the Evidence Store and creates
assessment results based on these as well as metrics.

• Orchestrator: Assessment results are sent to the Orchestrator.

• TWS: Evidence and assessment results are forwarded to the TWS for improving the
integrity of the EMERALD framework.

3.2.6.2 Published APIs

The Assessment component only provides one endpoint, namely for assessing evidence that is
sent to it.

Listing 21. Assessment API endpoint for evidence

3.2.6.3 Integration Status

Table 14 provides the current status of connections of the Assessment with other components.

Table 14. Integration status of Assessment with other EMERALD components

Component Status Comment

Evidence Store Connected -

Orchestrator Connected -

TWS Developing API (TWS) To be tested

3.2.7 Evaluation

As described in D3.3 [9], the Evaluation component is responsible for analysing one or more
assessment results to demonstrate compliance with particular controls outlined in a security
catalogue.

3.2.7.1 Expected behaviour (inputs/outputs)

The Evaluation only communicates directly with the Orchestrator, which is, e.g., triggering the
evaluation of certain security catalogue controls.

3.2.7.2 Published APIs

The Evaluation component provides the following four endpoints for starting/stopping an
evaluation, listing evaluation results, or creating an evaluation result manually, respectively.

Listing 22. Evaluation API endpoints

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 43 of 46

www.emerald-he.eu

3.2.7.3 Integration Status

Table 14 provides the current status of the connections of the Evaluation with other EMERALD
components.

Table 15. Integration Status of Evaluation with other EMERALD components

Component Status Comment

Orchestrator Connected -

3.3 EMERALD UI

The EMERALD UI –highlighted in the Figure 14 below– enables users to perform the different
user tasks needed to interact with the EMERALD framework. It provides an overview of the data
managed by the EMERALD components and combines the information into different workflows
to improve the user experience.

Figure 14. EMERALD UI in the architecture

3.3.1.1 Expected behaviour (inputs/outputs)

The EMERALD UI communicates with AMOE, the Orchestrator, the RCM and the TWS.

Some of the other components’ data is collected indirectly via the APIs of the components listed
in Section 3.1 and 3.2. Depending on the functionality provided by the different APIs, the
EMERALD UI offers different views and forms to adjust the content of the respective
components.

Apart from the code/backend functionality, the EMERALD UI component implements the user
interface itself, i.e., the part of EMERALD with which the user interacts. The user interface itself
is being developed in WP4. The UI pages have been implemented based on the mock-ups
defined in Figma27. The mock-ups were prioritized according to their occurrence in the User
Journeys (both are listed in D4.3 [15]) and their presumed readiness for implementation.

27 https://www.figma.com/

http://www.emerald-he.eu/
https://www.figma.com/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 44 of 46

www.emerald-he.eu

The user interface has been presented in the deliverable D4.5 [10] (M15) in detail, please refer
there for a more detailed description28.

3.3.1.2 Published APIs

There are no APIs published by the EMERALD UI – it only uses the APIs of the listed components.

3.3.1.3 Integration Status

The EMERALD UI has been deployed to the EMERALD Kubernetes development environment.
As development proceeds, local tests and integration tests will be conducted with the different
components. Once the component APIs have been updated, they will be integrated into the UI.
Currently, data from AMOE and RCM can be retrieved, but further testing and implementation
is required on all sides. The point-to-point integration status is shown in Table 16.

Table 16. Integration status of EMERALD UI with other EMERALD components

Component Status Comment

AMOE Connected Testing remains to be done. Only a subset of the
endpoints has been fully integrated yet.

Orchestrator Developing API Ready to implement, integrate and test parts of the
existing Orchestrator endpoints, while waiting for
updates from the Orchestrator API.

RCM Tested locally Waiting for updates to the API.

TWS Not started Discussion for endpoints and integration needed.

28 D4.5 is not a public deliverable, so it is only available to project partners.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 45 of 46

www.emerald-he.eu

4 Conclusions

The deliverable D1.7 presents the initial integrated solution of the EMERALD framework. The
document demonstrates the integration of various components developed across different
technical work packages, providing a cohesive prototype of the Compliance-as-a-Service (CaaS)
framework.

The integration of components such as AI-SEC, AMOE, Clouditor-Discovery, Codyze, eknows-e3,
TWS, MARI, RCM, Orchestrator, Evidence Store, Assessment, Evaluation, and the EMERALD UI
has been achieved in varying degrees. This initial integration ensures seamless communication
and collaboration among the components in the future, which is a must for the overall
functionality of the EMERALD framework.

The underlaying construction pieces of the EMERALD framework, supported by Kubernetes and
Docker technologies, has proven to be robust and scalable, while the use of the continuous
integration and continuous deployment (CI/CD) practices defined will facilitate the efficient
deployment and testing of components.

The initial prototype of the EMERALD framework provides a solid foundation for further
development and refinement and is the basis for the deployment of the framework in the pilots
as a representation of real-world scenarios.

The integration process will continue in next releases, with additional features being integrated
into the framework. This will ensure that the EMERALD framework remains comprehensive and
up-to-date. User feedback, coming from the validation work package (WP5), and rigorous testing
will be essential in identifying –apart from functional features for the components– areas for
improving the reliability and effectiveness of the framework. Future versions of the deliverable
will reflect the results of these tasks, updating the status of the integration of the different
components.

http://www.emerald-he.eu/

DRAFT
D1.7 - EMERALD Integrated solution - v1 Version 1.0 – Final. Date: 30.04.2025

© EMERALD Consortium Contract No. GA 101120688 Page 46 of 46

www.emerald-he.eu

5 References

[1] EMERALD consortium, “D1.2 Data modelling and interaction mechanisms - v2,” 2025.

[2] EMERALD Consortium, “D4.2 Results of the UI-UX requirements analysis and the work
processes – v2,” 2025.

[3] EMERALD Consortium, “D1.5 DevOps Methodology and CICD strategy - v1,” 2024.

[4] EMERALD Consortium, “D1.6 DevOps methodology and CI/CD strategy for EMERALD-v2,”
2025.

[5] EMERALD Consortium, “D2.6 ML model certification – v1,” 2024.

[6] EMERALD Consortium, “D2.4 AMOE – v1,” 2024.

[7] EMERALD Consortium, “D2.8 Runtime evidence extractor - v1,” 2024.

[8] EMERALD Consortium, “D2.2 Source Evidence Extractor – v1,” 2024.

[9] EMERALD Consortium, “D3.3 Evidence assessment and Certification–Implementation-v1,”
2024.

[10] EMERALD Consortium, “D4.5 EMERALD UI v1,” 2025.

[11] BSI - Bundesamtes für Sicherheit in der Informationstechnik, “Secure, robust and
transparent application of AI,” [Online]. Available:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/KI/Secure_robust_and_transpa
rent_application_of_AI.html. [Accessed April 2025].

[12] EMERALD Consortium, “D2.10 Certification Graph-v1,” 2025.

[13] NIST - National Institute of Standards and Technology, «OSCAL: the Open Security Controls
Assessment Language,» [En línea]. Available: https://pages.nist.gov/OSCAL. [Último acceso:
April 2025].

[14] ENISA, “EUCS - Cloud Services Scheme,” [Online]. Available:
https://www.enisa.europa.eu/publications/eucs-cloud-service-scheme. [Accessed April
2025].

[15] EMERALD Consortium, “D4.3 User interaction and user experience concept - v1,” 2024.

[16] EMERALD Consortium, “D3.5 Evidence assessment and Certification–Integration-v1,” 2025.

http://www.emerald-he.eu/

	Terms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Integration Overview
	2.1 Architecture Overview
	2.1.1 Workflows
	2.1.1 Design of the CI/CD Solution

	2.2 Components Integrated in the EMERALD Framework v1
	2.3 Test Bed Environment
	2.3.1 Container orchestration
	2.3.2 Storage
	2.3.3 Docker registry
	2.3.4 Network
	2.3.5 Dashboard
	2.3.6 Certificates
	2.3.7 Deployment view

	2.4 Steps to Integrate a Component
	2.5 Overall status of the integration

	3 Integration of Components
	3.1 Evidence Collectors
	3.1.1 AI-SEC
	3.1.1.1 Expected behaviour (inputs/outputs)
	3.1.1.2 Published APIs
	3.1.1.3 Integration Status

	3.1.2 AMOE
	3.1.2.1 Expected behaviour (inputs/outputs)
	3.1.2.2 Published APIs
	3.1.2.3 Integration Status

	3.1.3 Clouditor-Discovery
	3.1.3.1 Expected behaviour (inputs/outputs)
	3.1.3.2 Published APIs
	3.1.3.3 Integration Status

	3.1.4 Codyze
	3.1.4.1 Expected behaviour (inputs/outputs)
	3.1.4.2 Published CLIs
	3.1.4.3 Integration Status

	3.1.5 eknows-e3
	3.1.5.1 Expected behaviour (inputs/outputs)
	3.1.5.2 Published CLIs
	3.1.5.3 Integration Status

	3.2 Evidence Assessment and Certification
	3.2.1 TWS
	3.2.1.1 Expected behaviour (inputs/outputs)
	3.2.1.2 Published APIs
	3.2.1.3 Integration Status

	3.2.2 MARI
	3.2.2.1 Expected behaviour (inputs/outputs)
	3.2.2.2 Published APIs
	3.2.2.3 Integration Status

	3.2.3 RCM
	3.2.3.1 Expected behaviour (inputs/outputs)
	3.2.3.2 Published APIs
	3.2.3.3 Integration Status

	3.2.4 Orchestrator
	3.2.4.1 Expected behaviour (inputs/outputs)
	3.2.4.2 Published APIs
	3.2.4.3 Integration Status

	3.2.5 Evidence Store
	3.2.5.1 Expected behaviour (inputs/outputs)
	3.2.5.2 Published APIs
	3.2.5.3 Integration Status

	3.2.6 Assessment
	3.2.6.1 Expected behaviour (inputs/outputs)
	3.2.6.2 Published APIs
	3.2.6.3 Integration Status

	3.2.7 Evaluation
	3.2.7.1 Expected behaviour (inputs/outputs)
	3.2.7.2 Published APIs
	3.2.7.3 Integration Status

	3.3 EMERALD UI
	3.3.1.1 Expected behaviour (inputs/outputs)
	3.3.1.2 Published APIs
	3.3.1.3 Integration Status

	4 Conclusions
	5 References

