

Deliverable D2.10

Certification Graph – v1

Editor(s): Verena Geist, Stefan Schöberl
Responsible Partner: Software Competence Center Hagenberg GmbH
Status-Version: Final
Date: 31.01.2025
Type: OTHER
Distribution level (SEN, PU): PU

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 28
www.emerald-he.eu

Project Number: 101120688
Project Title: EMERALD

Title of Deliverable: Certification Graph – v1
Due Date of Delivery to the EC: 31.01.2025

Workpackage responsible for the
Deliverable: WP2 – Methodology for Knowledge Extraction

Editor(s): Verena Geist, Stefan Schöberl (SCCH)

Contributor(s): Angelika Schneider, Florian Wendland, Christian Banse
(FHG)

Reviewer(s): Angela Fessl (KNOW)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners
Recommended/mandatory
readers:

WP2, WP3

Abstract: EMERALD aims to integrate evidence collected at
different levels of the cloud service into a single graph-
based structure, the Certification Graph. This document
describes the interim version of the graph, i.e. its schema
(or ontology), with semantically linked and combined
evidence. The development mainly involves work of T2.1
and T2.6, but also inputs of T2.2, T2.3, T2.4, T2.5, and
T3.1 are considered.

Keyword List: Knowledge graph schema, ontology extensions, security
features, knowledge integration, combined evidence
analysis.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0
DEED https://creativecommons.org/licenses/by-sa/4.0/)

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 28
www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 03.12.2024 First draft version, key information,
and TOC.

Verena Geist (SCCH)

v0.2 05.12.2024 Executive summary, introduction,
functional description, requirements
fulfilment, technical specifications,
licensing information, and download.

Verena Geist (SCCH)

v0.3 09.12.2024 Recap and changes, architecture, and
references.

Verena Geist (SCCH)

v0.4 08.01.2025 Details on ontology extensions,
delivery, and usage

Stefan Schöberl (SCCH)

v0.5 10.01.2025 Review of content Angelika Schneider
(FHG)

v0.6 13.01.2025 Finalization before internal review Verena Geist (SCCH)
Stefan Schöberl (SCCH)

v0.7 15.01.2025 Internal Review Angela Fessl (KNOW)

v0.8 23.01.2025 Addressing internal review and
improving subcomponents description
and illustrative example

Verena Geist (SCCH)
Stefan Schöberl (SCCH)

v0.9 27.01.2025 Final reviewed version Cristina Martínez,
Juncal Alonso
(TECNALIA)

v1.0 31.01.2025 Submitted to the European
Commission

Cristina Martínez,
Juncal Alonso
(TECNALIA)

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 28
www.emerald-he.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this deliverable .. 8

1.2 Document structure ... 9

2 Recap of the initial draft of the CertGraph ontology and changes 10

3 The CertGraph ontology (interim version) .. 11

3.1 Functional description ... 11

3.2 Technical description ... 14

3.2.1 Architecture ... 14

3.2.2 Subcomponents description .. 15

3.2.3 Technical specifications ... 21

3.3 Delivery and usage ... 21

3.3.1 Download .. 21

3.3.2 Package information .. 22

3.3.3 Instructions for use .. 22

3.3.4 Licensing information .. 22

3.4 Limitations and future work .. 23

4 Refined illustrative example of modelling and combining evidence information for the used
TLS Version .. 24

5 Conclusions .. 26

6 References ... 27

 List of tables

TABLE 1. REQ.01 - FORMAL LANGUAGE.. 11
TABLE 2. REQ.02 - CLEAR CONCEPTUALIZATION ... 11
TABLE 3. REQ.03 - HIERARCHICAL STRUCTURE OF CONCEPTS ... 11
TABLE 4. REQ.04 - REASONING AND CONSISTENCY CHECKING .. 12
TABLE 5. REQ.05 - INTEROPERABILITY AND EXTENSIBILITY .. 12
TABLE 6. REQ.06 - DOCUMENTATION AND ANNOTATION .. 12
TABLE 7. REQ.07 - VERSIONING .. 12
TABLE 8. OVERVIEW AND DESCRIPTION OF PACKAGE STRUCTURE FOR THE CERTGRAPH ONTOLOGY 22

List of figures

FIGURE 1. INITIAL DESIGN OF THE CERTGRAPH ONTOLOGY WITH SUB-ONTOLOGIES AND EXTENSIONS FROM D2.1
[1] .. 10

FIGURE 2. EMERALD COMPONENT OVERVIEW DIAGRAM [12] ... 14
FIGURE 3. UPDATED DESIGN OF THE CERTGRAPH ONTOLOGY .. 15
FIGURE 4. EXCERPT OF THE EVIDENCE SUB-ONTOLOGY ... 16
FIGURE 5. EXCERPT OF THE FRAMEWORK SUB-ONTOLOGY .. 16

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 28
www.emerald-he.eu

FIGURE 6. EXCERPT OF THE FUNCTIONALITY SUB-ONTOLOGY ... 17
FIGURE 7. EXCERPT OF THE PROPERTIES SUB-ONTOLOGY .. 17
FIGURE 8. EXCERPT OF THE SECURITY SUB-ONTOLOGY ... 18
FIGURE 9. EXCERPT OF THE CLOUD ONTOLOGY EXTENSION ... 19
FIGURE 10. EXCERPT OF THE APPLICATION ONTOLOGY EXTENSION ... 19
FIGURE 11. EXCERPT OF THE ML ONTOLOGY EXTENSION .. 20
FIGURE 12. EXCERPT OF THE DOCUMENT ONTOLOGY EXTENSION ... 21
FIGURE 13. CLASSES (RECTANGLES) AND INSTANCES (HEXAGONS) FOR THE TLS EXAMPLE, SHOWING EVIDENCE

FOUND IN SOURCE CODE (IMPLEMENTED) AND CORRESPONDING EVIDENCE IN A DOCUMENT (SPECIFIED)
REGARDING TRANSPORT ENCRYPTION, WHICH CAN BE USED TO VERIFY CRY-02 FROM BSI C5:2020
(ADAPTED FROM [9]).. 24

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 28
www.emerald-he.eu

Terms and abbreviations
AI Artificial Intelligence
AI-SEC AI Security Evidence Collector
AMOE Assessment and Management of Organizational Evidence
BSI Bundesamt für Sicherheit in der Informationstechnik
BSI C5 BSI Cloud Computing Compliance Criteria Catalogue
CertGraph Certification Graph
Codyze Static Code Analyzer
EC European Commission
eknows Platform for software analysis
eknows-e3 Extractor component developed in the context of EMERALD
GA Grant Agreement to the project
HTTP Hypertext Transfer Protocol
ID Identity
KR Key Result
MEDINA Predecessor project of EMERALD
ML Machine Learning
NLP Natural Language Processing
OTP One-time password
OWL Web Ontology Language
PDF Portable Document Format
Protobuf Protocol Buffers
RDF Resource Description Framework
RCM Repository of Controls and Metrics
SSO Single Sign-On
SPARQL SPARQL Protocol And RDF Query Language
SWRL Semantic Web Rule Language
TLS Transport Layer Security
UI User Interface
URI Uniform Resource Identifier
WP Work Package
XML Extensible Markup Language

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 28
www.emerald-he.eu

Executive Summary
This deliverable describes the interim version of the central Certification Graph schema (i.e., the
CertGraph ontology) for storing evidence in a graph-based format and is the refinement of the
initial work on designing the CertGraph ontology in D2.1 [1]. This ontology serves as a common
structure for semantically linked and combined evidence that is filled by all evidence extraction
components of WP2.

By developing the CertGraph ontology, this deliverable contributes to the key result CERTGRAPH
(KR2) of the EMERALD project to provide a unified graph-based model of the cloud service under
certification at different layers of the service. Following a knowledge graph-based approach in
EMERALD, the ontology for storing and linking heterogenous evidence information is developed
in WP2, and the model is then implemented as a knowledge graph in WP3.

First, this document starts with a recap of the CertGraph ontology from D2.1 [1] and indicates
current changes. Second, the main part provides the functional and technical descriptions of the
ontology, including its sub-ontologies and extensions to support the holistic approach to
evidence collection. Some instructions for delivery and usage as well as current limitations are
also presented. Third, a refined example of modelling and combining evidence information for
TLS encryption from different sources illustrates the purpose and innovation of the ontology.
Finally, the document concludes with a short summary and discussion of future work.

The main result of this deliverable is a uniform graph-based model to

(i) consolidate all extracted evidence information,
(ii) enable the retrieval of combined evidence by aggregating individual pieces of

information to a higher-level viewpoint,
(iii) maintain traceability back to different information sources and extraction tools, and
(iv) provide all required concepts for resource types and security features to assess

certification-relevant security metrics.

Based on this model, the uniform schema of evidence information will be further refined and
analysed. The final version of the CertGraph ontology will then be reported in D2.11 [2], due in
month 27.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 28
www.emerald-he.eu

1 Introduction
The CertGraph ontology, previously drafted in D2.1 [1], is a central graph-based model to
support certification by bridging different layers and sources of extracted information, called
evidence, from a cloud service. For this purpose, the ontology provides a highly structured,
formal representation of a set of concepts (or classes) and their relationships and properties
within the cloud service certification domain. It is created using a formal language, i.e. the Web
Ontology Language (OWL), which supports complex expressions and logical inferences, including
constraints, class hierarchies, and more. The main purpose of an ontology is to support
knowledge sharing and reuse through structured domain knowledge as well as reasoning about
the entities within the domain. In EMERALD, the CertGraph ontology enables harmonization of
evidence gathering and assessment. Security controls defined in different schemas or catalogues
are assigned to ontological concepts and those ontological types will be further used in metric
definitions.

For automated compliance tools to work, suitable evidence needs to be extracted and linked.
The evidence extractors developed in the EMERALD project and described in D2.2 [3], D2.4 [4],
D2.6 [5], and D2.8 [6] extract and provide suitable evidence from

(i) the source code of services, often written in different programming languages, such as
Java, Go, or Python (Codyze and eknows-e31),

(ii) relevant parts of legal and policy documents, such as requirement or architecture
documents (AMOE),

(iii) applied machine learning (ML) models with respect to various criteria, such as
robustness, fairness, and explainability (AI-SEC), and

(iv) the virtual infrastructure, such as virtual machines, containers, or storage as well as
runtime information, such as configuration or log files (Clouditor-Discovery).

The CertGraph Ontology with its respective extensions described in this document is a central
tool to bridge those different layers and sources of evidence. Therefore, the ontology defines a
vocabulary for mapping between the properties that shall be measured and the respective
gathering of adequate evidence. It allows to aggregate individual aspects and fragments of
information to a higher-level viewpoint of combined evidence, not previously detectable by a
single tool.

1.1 About this deliverable

This document aims to describe the CertGraph ontology for modelling evidence information in
the cloud service certification domain as a common structure for semantically linked and
combined evidence. It consists of a core ontology and several sub-ontologies for capturing
security features as well as domain concepts and relationships of different extensions. In this
deliverable, the structure and the main concepts of the extensions to consolidate all extracted
evidence information in terms of taxonomies is presented. In addition, properties are discussed
which maintain traceability back to different information sources and extraction tools. For
better illustration, we base the explanations on an example which uses one selected security
criteria “encryption of data for transmission”, which is specified in the BSI C5:20202 (CRY-02).

The CertGraph ontology represents the basis for integrating and instantiating the knowledge
graph in the Evidence Store component in Task 3.1. It is also the foundation for analysing the
semantic information and context of the heterogeneous evidence information in Task 2.6 to
enable the retrieval of combined evidence. Another important aspect is to semantically describe

1 Note that the component was renamed from eknows to eknows evidence extractor (eknows-e3)
2 https://www.bsi.bund.de/dok/13368652

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 28
www.emerald-he.eu

how specific Resource Types are related to Security Features, which are essential concepts to
assess certification-relevant security metrics in Task 3.4.

1.2 Document structure

The document is structured as follows.

In Section 2, we give a short recap of the CertGraph ontology as introduced in D2.1 [1]. We also
indicate any changes from the initial draft and discuss current refinements.

Section 3 provides functional and technical descriptions of the CertGraph ontology at the current
development stage, as well as information on delivery and usage. Details on the sub-ontologies
and extensions for the different cloud service layers are presented, i.e., for extracted evidence
from source code, from policy documents, from ML models, and from cloud runtime
environments. We further discuss refinements and limitations of concepts for combining
evidence and supporting traceability, as well as for security features to assess new security
metrics.

In Section 4, the illustrative example originally outlined in D2.1 [1] for modelling and combining
extracted evidence information from different sources is refined.

Section 5 ends up with the conclusions, including a short summary of the content presented,
open challenges, and future work.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 28
www.emerald-he.eu

2 Recap of the initial draft of the CertGraph ontology and changes
The CertGraph ontology introduced in D2.1 [1] is based on the Cloud Property Graph [7] ontology
from the MEDINA H2020 project3, which proposes a vendor-independent ontology of cloud
resources and related security features. It has the major advantage that metrics (or rules) can
be defined for abstract resource types and/or security features, while the extractor tools can
agnostically gather evidence for these abstract concepts as well.

Figure 1 shows the different sub-ontologies and extensions of the overall CertGraph ontology,
which together represent a unified source of types in the cloud service certification domain. The
basic architecture remains unchanged. The Core ontology, together with the Security Feature
ontology, builds the foundation of the ontology and contains base classes and properties.
Specifically, Security Feature models different security related concepts. The extensions are built
on top of this foundation, and each extension models the evidence gathered by a different type
of extractor (i.e., eknows-e3 / Codyze, AMOE, AI-SEC, and Clouditor-Discovery). The collected
evidence from the extractors is represented as instances within a separate part that, in turn, is
built upon the ontology and implemented in the Evidence Store (see D2.1 [1]).

Figure 1. Initial design of the CertGraph ontology with sub-ontologies and extensions from D2.1 [1]

Changes at the current development stage concern:

 Reuse concepts from the Cloud Property Graph [7] to build Core (including reuse of
security features) and Cloud.

 Model evidence and resources in Core, including further refinement.
 Refinement of Core into smaller sub-ontologies to improve the ontology structure.
 Refinement of extensions, in particular:

o Application: Model applications including source code.
o Document: Model documents, add corresponding properties.
o ML: Create first draft, define relevant aspects.
o Cloud: Extension and refinement of the cloud concept and its properties.

The refinement of all ontologies including extensions can be found in Section 3.2.2.

3 https://medina-project.eu/

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 28
www.emerald-he.eu

3 The CertGraph ontology (interim version)
In this section, we describe the interim version of the CertGraph ontology, the schema of the
envisaged Certification Graph designed to streamline security certification which integrates
evidence from multiple sources [8].

3.1 Functional description

Motivation and scope. The foundation of our knowledge graph is an ontology to store and link
evidence and the fusion of extracted knowledge from different sources. We consider the
complete stack from software to policies and enable the fusion of evidence from different views
and sources. Its extensible ontology is designed to accommodate multiple domains, including
cloud security, ML models, and source code. By providing an automated and systematic
approach to extract evidence from different sources and build an ontology, the resulting
Certification Graph aims to facilitate more effective security certification and compliance
verification [8].

Requirements. In D2.1 [1], a list of requirements for developing the ontology was introduced.
In the following, their respective implementation state (partially / fully /not implemented) and
a brief description of how they are / will be implemented are given in tables from Table 1 to
Table 7.

Table 1. REQ.01 - Formal language

Field Description
Requirement ID REQ.01
Short title Formal language
Description The ontology should be defined using a formal language that allows

for the expression of concepts, relationships, instances, and axioms.
Progress Fully Implemented – 100 %

The ontology is defined using the Web Ontology Language (OWL)4.

Table 2. REQ.02 - Clear conceptualization

Field Description
Requirement ID REQ.02
Short title Clear conceptualization
Description The ontology should provide a clear and comprehensive

conceptualization of the domain it represents.
Progress Partially implemented – 30%

The ontology extensions need to be further refined, in particular for application, ML, and
document.

Table 3. REQ.03 - Hierarchical structure of concepts

Field Description
Requirement ID REQ.03
Short title Hierarchical structure of concepts

4 https://www.w3.org/OWL/

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 28
www.emerald-he.eu

Description The ontology should support the creation of a hierarchical structure
of concepts, allowing for subclass relationships and the organization
of concepts into a taxonomy.

Progress Fully Implemented – 100 %

The ontology extensions are modelled as taxonomies.

Table 4. REQ.04 - Reasoning and consistency checking

Field Description
Requirement ID REQ.04
Short title Reasoning and consistency checking
Description The ontology should be compatible with inference engines and

allow for the definition of logical rules that enable automated
reasoning about the concepts and their relationships.

Progress Fully Implemented – 100 %

The selected modelling tool supports a reasoning component to derive new information based
on rules and to detect inconsistencies in the ontology.

Table 5. REQ.05 - Interoperability and extensibility

Field Description
Requirement ID REQ1.05
Short title Interoperability and extensibility
Description The ontology should be developed in a way that ensures

interoperability with other ontologies, facilitating data exchange
and integration across different layers of a cloud service.

Progress Fully Implemented – 100 %

The selected modelling tool supports the splitting of the ontology into multiple files for better
structuring and linking of concepts using different namespaces, i.e., through different sub-
ontologies and extension.

Table 6. REQ.06 - Documentation and annotation

Field Description
Requirement ID REQ.06
Short title Documentation and annotation
Description Comprehensive documentation and annotation of the ontology

should be available.
Progress Partially implemented – 20%

Documentation and annotation of the ontology needs to be improved. Only few concepts are
documented yet.

Table 7. REQ.07 - Versioning

Field Description
Requirement ID REQ.07
Short title Versioning

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 28
www.emerald-he.eu

Description There should be a clear strategy for handling the releases of the
ontology (e.g., annually, quarterly, or on demand) and how changes
and new versions are announced.

Progress Partially implemented – 30%

Currently, the used version control tool supports versioning of OWL files and collaboration, but
no strategy for releases and changes has yet been defined.

Innovation. Previous approaches [7] [9] [10] [11] that build on the notion of gathering evidence
– from sources such as the cloud infrastructure – to demonstrate compliance to certain
standards or regulations have several shortcomings. They perform a mapping to a structure
described in an ontology to harmonize evidence gathered from various cloud providers and
technologies, but they are not very comprehensive in terms of semantic modelling. For example,
they mostly focus on cloud infrastructure resources. However, in a real-world certification
scenario, many more resource types, such as source code, policy documents or other data assets
need to be assessed. Second, previous approaches created different, independent kinds of
evidence for each resource and stored them into information silos, even if they describe the
same aspect (e.g., configuration of encryption), but from different viewpoints.

The knowledge graph-based approach in EMERALD will go beyond these shortcomings: First, the
Certification Graph aims to be a systematic approach to building an ontology for security
certifications spanning the complete stack from infrastructure layer, source code, data to
policies and procedures [8]. By providing a schema for storing and linking the heterogeneous
evidence information, EMERALD can provide a unified view of the cloud service under
certification. Second, by linking generic models at different levels of abstraction the Certification
Graph enables the development and assessment of complex mapping rules. It provides an initial
approach for the fusion of evidence coming from different views/sources of the same resource
[8]. This approach allows to aggregate individual aspects and fragments of information to a
higher-level of combined evidence, while providing support for traceability to information
sources and extraction processes.

This way, the Certification Graph serves as a common structure that is filled by all evidence
extraction tools and can be leveraged by the assessment tools to measure security metrics
relevant for certification, which makes the EMERALD knowledge graph outstanding and
innovative. Assessing (partial) evidence from different sources also allows a qualitative
statement about the accuracy of measured results for auditors and, furthermore, enables the
comparison between specification (e.g., in policy documents) and implementation (e.g., in
source code) of security features.

Fitting into overall EMERALD Architecture. How the CertGraph ontology fits into the overall
EMERALD architecture and how it is related with the other components was already presented
in D2.1 [1]. Figure 2 shows the EMERALD high-level architecture as a component diagram. There
have been no changes to the component diagram so far: The extraction components for
collecting evidence, i.e., AMOE, Codyze, eknows-e3, AI-SEC, and Clouditor-Discovery are
represented at the bottom part of Figure 2. They map the extracted information to the EMERALD
evidence format using the terms described in the CertGraph ontology. This raw evidence is then
delivered to the Evidence Store following the defined schema and is used to assess the metrics
defined in the Repository of Controls and Metrics (RCM).

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 28
www.emerald-he.eu

Figure 2. EMERALD component overview diagram [12]

Usage. In EMERALD, the CertGraph ontology will be used for:

 Defining the schema of evidence to be stored in the Evidence Store (see D3.4 [13]).
 Preparing suitable evidence by the extraction components according to the ontology

terms. The tool Owl2proto5 may be used to convert the modelled ontology to an
appropriate protobuf schema, which can be directly used in different programming
languages (see D2.1 [1]).

 Defining required fields for security metrics (i.e., Resource Type and Security Feature) in
the RCM (see D3.4 [13]).

3.2 Technical description

The following subsections describe the technical details of the CertGraph ontology.

3.2.1 Architecture

The CertGraph ontology consists of multiple smaller ontologies. As shown in Figure 3, five
ontologies form the Core: Evidence, Framework, Functionality, Properties, and Security.
Extensions are built on top of the Core and hook into the Resource taxonomy, starting at the
Resource class defined in the Evidence ontology. We propose four extensions, each covering its
own domain:

 A source code taxonomy (Application) to categorize and organize code elements based
on their characteristics and functionalities.

 An organizational taxonomy (Document) to categorize and organize textual information
from policy documents.

 An AI taxonomy (ML) to categorize and organize information extracted from ML models
based on selected criteria.

 A cloud resource taxonomy (Cloud) to categorize and organize information extracted
from cloud resources with application-specific runtime information.

5 https://github.com/oxisto/owl2proto

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 28
www.emerald-he.eu

This approach also allows for further extension of the ontology by developing new extensions
for other domains, if needed. For all sub-ontologies and new extensions, customized URIs are
used to avoid interoperability issues when working with multiple namespaces and combing
evidence information.

Figure 3. Updated design of the CertGraph ontology

3.2.2 Subcomponents description

This section presents the current state of the ontologies. They are modelled using Protégé6 and
stored as OWL/XML files.

3.2.2.1 Core – a base ontology

Core forms the base of the CertGraph ontology and is composed of five ontologies. From a
technical perspective, this ontology is just a wrapper around the five sub-ontologies by
importing them. There are two use cases for this ontology: First, when developing extensions,
this ontology must be imported into the extension to reuse concepts from Core. Second, when
instantiating the ontology, Core describes the (base) structure of the resulting knowledge graph.

3.2.2.1.1 Evidence – linking resources with security features

This sub-ontology models detected or extracted evidence regardless of the actual source. Each
Evidence is connected to a SecurityFeature, to a Tool (to link the extraction tool for traceability),
to a Resource (to store the detection point for traceability), and to a CertificationTarget (to link
to the related cloud service, for example). Furthermore, Resource has a connection to
ResourceType (modelled as an enumeration type), to distinguish between specified and
implemented behaviour.

Figure 4 shows an excerpt of the Evidence sub-ontology, i.e. the class hierarchy. Therefore,
SecurityFeature is not shown in this figure (details can be found in Section 3.2.2.1.5). Further,
connections (object and data properties) between classes are not shown in this diagram. An
example of connecting various instances of those classes can be found in Section 4.

6 https://protege.stanford.edu/

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 28
www.emerald-he.eu

Figure 4. Excerpt of the Evidence sub-ontology

3.2.2.1.2 Framework – containing common types of software components

Common (high-level) types of software components are modelled in the Framework ontology
(see Figure 5), which can be reused across different resources. This includes, for example, a
HttpServer or a Logging component. This ontology is based on the taxonomy with the same
name from the Cloud Property Graph [7].

Figure 5. Excerpt of the Framework sub-ontology

3.2.2.1.3 Functionality – containing common data types

In addition to the high-level types (defined in Framework), smaller parts of software must be
modelled. Also, in many parts of the CertGraph ontology, simple record types are needed. The
Functionality ontology (see Figure 6) models all needed types, without restriction to a specific
domain. For example, HttpEndpoint or HttpRequests are two classes in this ontology, which
model smaller parts of software. On the contrast, CipherSuite, for example, is used as a record
type and wraps the respective properties. This ontology is based on the taxonomy with the same
name from the Cloud Property Graph [7].

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 28
www.emerald-he.eu

Figure 6. Excerpt of the Functionality sub-ontology

3.2.2.1.4 Properties – containing common object and data properties

Within the whole CertGraph ontology, classes are connected by object and data properties.
Often, these connections are quite similar or have similar semantics. The Properties ontology
(see excerpt in Figure 7) defines a common set of object and data properties, which can be
reused across the whole ontology. This includes generic properties to model *-to-one and *-to-
many relationships like has and hasMultiple, and specific ones like filename or filetype to
connect the respective properties to file-like classes and instances. Properties contained in this
ontology are based on the ones from the Cloud Property Graph [7].

Figure 7. Excerpt of the Properties sub-ontology

3.2.2.1.5 Security – containing Security Feature

Security models security properties for all kind of domains (see Figure 8) and is based on the
taxonomy with the same name from the Cloud Property Graph [7].

Concepts in this ontology include:

 Auditing – including anomaly detection or logging, for example.
 Authenticity – including different types of authentications like passwords, OTP or SSO,

for example.
 Authorization – including firewalls or access control, for example.
 Availability – including backups or redundancy, for example.
 Confidentiality – including transport encryption or encryption at rest, for example.
 Integrity – including signatures or hashes, for example.
 Reliability – including ML-related scores for robustness or explainability, for example.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 28
www.emerald-he.eu

Figure 8. Excerpt of the Security sub-ontology

3.2.2.2 Cloud – an ontology extension for cloud resources

Cloud models cloud resources (see Figure 9), and this extension is based on the CloudResource
taxonomy from the Cloud Property Graph [7].

Currently, this ontology extension is already the most developed one. High-level concepts in this
ontology include, among others:

 CICDService – including jobs, and workflows.
 Compute – including different types of compute resources like containers, functions,

and virtual machines.
 Credential – including certificates, keys, and secrets.
 Networking – including virtual networks, and load balancers.
 Storage – including file and data base storage.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 28
www.emerald-he.eu

Figure 9. Excerpt of the Cloud ontology extension

3.2.2.3 Application – an ontology extension for source code

Application models source code and code-like artifacts (see Figure 10). A first draft of this
extension, based on the genera idea of [11], is included in the current version. Still, further
refinement of this extension is needed. This includes extending links to other classes and refining
the abstraction level, as just storing the syntax tree would be far too detailed.

High-level concepts in this ontology include:

 Component – models large software components and forms the base class of
Application and Library.

 Module – models small software components like source code files.
 Application – models source software applications and stores properties like the

programming language.
 Library – describes dependencies of components.

Figure 10. Excerpt of the Application ontology extension

3.2.2.4 ML – an ontology extension for AI/ML models

A taxonomy for assessing security-related criteria for ML models deployed in the cloud serves
as a structured framework to evaluate, categorize, and mitigate potential threats and security
vulnerabilities (see Figure 11). Whereas scientific work (e.g. [14]) provides a comprehensive
taxonomy on deep learning techniques, in EMERALD we focus on required data to assess key
criteria such as robustness against adversarial attacks and explainability (transparency and
interpretability of decisions). We base our work on existing research [15] to be able to provide
a generic approach that can be applied to various types of ML models.

To assess the robustness and explainability scores of a ML model, the following information is
typically required in the taxonomy on a high conceptual level:

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 28
www.emerald-he.eu

 MLModel – representing the model information, that is the model architecture
(including model parameters, hyperparameters, loss function, etc.), the respective task
(image recognition, NLP, etc.), the required input and output data types and formats,
and evaluation metrics (such as accuracy, response time, confidence, etc.)

 Dataset – specifying the data actually used by the model, or its subset.

Figure 11. Excerpt of the ML ontology extension

Currently, classes contained in this ontology extension can be used to represent ML models and
their context in a very high-level and abstract way. More details (e.g., properties) need to be
elaborated and included into the taxonomy according to the needs and scope in EMERALD and
will be documented in in the final deliverable D2.11 [2] due in month 27. Also, frameworks for
Machine Learning need to be modelled. Here it still must be decided whether they are parts of
the ML extension or fit better in the Framework sub-ontology of Core.

3.2.2.5 Document – an ontology extension for security-related documents

Creating a taxonomy for documents, which primarily contains human-readable text (see Figure
12), for automatically assessing security policies and standards involves organizing content into
hierarchical or categorized groups that reflect the nature, purpose, and context of the
documents [16] [17] [18] [19].

High-level concepts in this taxonomy include:

 PolicyDocument – documenting policies regarding information security, acceptable use,
data protection, password, encryption, authentication, etc.

 SecurityAdvisoryDocument – documenting regulators requirements, internal
guidelines, etc.

 ServiceMetadataDocument – documenting information on network security,
application security, secure software development lifecycle, etc.

 GenericDocument – representing a placeholder for additional documents that are not
yet modelled separately.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 28
www.emerald-he.eu

Figure 12. Excerpt of the Document ontology extension

At the time of writing, the taxonomy for security-related documents is only designed at a high
level of abstraction, which will be adjusted in the final deliverable D2.11 [2] due in month 27
depending on specific needs and scope in EMERALD.

3.2.3 Technical specifications

The Protégé6 and Git7 tools are used to develop the CertGraph ontology in EMERALD. Protégé is
a desktop application developed by Stanford university that enables the modelling of ontologies
using OWL concepts. It supports the splitting of the ontology into multiple files for better
structuring and linking of concepts using different namespaces, i.e., through different sub-
ontologies and extensions. A reasoning component can derive new information based on rules,
which is very useful for the fusion of multiple evidence parts and can detect inconsistencies in
ontologies.

All sub-ontologies and extensions are saved as OWL/XML8. Changes are checked into the Git
repository. The discussion and review of these changes occur via pull requests on GitLab, before
the changes are merged into the main branch. This process ensures that the created ontologies
are secured in the sense of allowing for version control, to make sure that the newly developed
ontologies are discussed, and only corrected and accepted versions are merged into the main
branch.

3.3 Delivery and usage

The following sub-sections detail the delivery and usage of the CertGraph ontology. The
provided information is currently work in progress and may change.

3.3.1 Download

The CertGraph ontology is available from the public EMERALD GitLab repository9 hosted by
TECNALIA. The repository will host all sub-ontologies and extensions in the OWL/XML ontology
format (*.owx).

7 https://www.git-scm.com/
8 https://www.w3.org/TR/owl-xmlsyntax/
9 https://git.code.tecnalia.dev/emerald/public/certgraph

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 28
www.emerald-he.eu

3.3.2 Package information

Table 8 shows the structure of the Gitlab repository9 and its contents.

Table 8. Overview and description of package structure for the CertGraph ontology

Folder / File Description
emerald.owx Entry point of the whole ontology, which can be used to

open it in Protégé, for example (used for convenient
development within the EMERALD project)

core.owx Core ontology. In addition, it imports the five core
ontologies below

core/evidence.owx Evidence Ontology
core/framework.owx Framework Ontology
core/functionality.owx Functionality Ontology
core/properties.owx Properties Ontology
core/security.owx Security Feature Ontology
resource.owx Wrapper ontology, which imports the four extension

ontologies below (used for convenient development
within the EMERALD project)

resource/infrastructure.owx Ontology extension for cloud resources
resource/application.owx Ontology extension for source code
resource/ml.owx Ontology extension for machine learning models
resource/document.owx Ontology extension for documents

3.3.3 Instructions for use

Instructions for use are provided as part of the README in the public GitLab repository9.

In summary, following requirements must be met before using the CertGraph ontology:

 To explore the ontology, an ontology modelling tool that supports the OWL ontology
format, such as Protégé, must be installed.

 If the ontology should be extended or changed, a version control tool, such as Git, is
recommended.

The whole ontology can be viewed in Protégé by opening emerald.owx. In addition, if only
parts of the ontology are to be viewed, the respective owx file can also be opened on its own.

To instantiate the ontology, the following workflow is recommended:

1. Create a new ontology file.
2. Import core.owx using the Imported Ontologies view.
3. Import relevant extensions from the resource folder or all of them by importing

resource.owx.
4. Created instances will be stored in the newly created ontology file.

Note that the CertGraph ontology will not be visualized in the EMERALD UI.

3.3.4 Licensing information

The CertGraph ontology and its sub-ontologies and extensions are licensed as open source under
Apache License, Version 2.0.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 28
www.emerald-he.eu

3.4 Limitations and future work

The CertGraph ontology with its sub-ontologies and extensions will continuously be extended in
the course of the project. Furthermore, some design decisions are not final and are still under
discussion. This includes, but is not limited to, connections between classes in general or new
classes required for describing the extension domains. The ontology is constantly being further
developed, in particular, the Application and ML extensions require more extensive refinement.

To meaningfully fuse the knowledge, which is provided by the evidence extraction tools, we
have discussed several ideas on how to accomplish this. One idea is to use SWRL10 or similar
languages to describe rules, which are used to derive new knowledge from gathered evidence,
thus new edges are added to the graph, which in turn leads to denser interlinking of data. In this
context, it has already become apparent that a unique ID is necessary to identify service
instances (i.e., each service can be referenced by a unique URI across extractors). Another idea
is to use SPARQL11 to query the graph and in this way to link the information in the graph and
receive it as a query result. Currently, we are evaluating what can be implemented, which
libraries are available, and what is supported by the used graph database.

At the time of writing, the implications of each decision cannot yet be entirely estimated, and
the structure of the CertGraph ontology will continue to evolve. The results will be reported in
the upcoming deliverable D2.11 [2].

10 https://www.w3.org/submissions/SWRL/
11 https://www.w3.org/TR/sparql11-query/

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 28
www.emerald-he.eu

4 Refined illustrative example of modelling and combining
evidence information for the used TLS Version

For better illustration, we base the idea for modelling and combining evidence information from
different sources on an example (see Figure 13), which uses a selected security criteria:
“Encryption of data for transmission”, which is specified in the BSI C5:20201 (CRY-02). In this
example we model the used TLS (Transport Layer Security) version from different views.

This is a refinement of the first idea drafted in D2.1 [1]. The focus is on illustrating
interconnectivity between selected sub-ontologies and extensions, and not on contained
details. The restructuring and extension of the CertGraph ontology is reflected in Figure 13. In
the diagram, classes are visualized as rectangles and instances as hexagons. Open-headed
arrows with a filled line (⇾) represent “subclass of” relations, which connect subclasses to their
parent class, and open headed arrows with a dashed line (┉▹) represent “instance of” relations,
which connect instances to their class. Simple arrows (→) represent data and object properties.
These arrows are used between classes to define the schema, as well as between instances in
their materialized form.

Figure 13. Classes (rectangles) and instances (hexagons) for the TLS example, showing evidence found in
source code (implemented) and corresponding evidence in a document (specified) regarding transport

encryption, which can be used to verify CRY-02 from BSI C5:2020 (adapted from [9])

As described in Section 3.2.2, the ontology Core forms the basis for the CertGraph ontology. It
defines the metamodel for EMERALD evidence and uses the concepts defined in the Security
Feature sub-ontology, which contains a variety of security features and data properties:

 Evidence is the central class and instances of it represent detected security evidence.
Each evidence has connections to SecurityFeature, CertificationTarget, Resource, and
Tool.

 Resource represents the source of a piece of evidence and stores relevant metadata for
the location. Each Resource has a connection to an ResourceType.

 ResourceType classifies the role of resource within the system. ResourceType is
modelled as an enumeration type in ontology terms. For this, a class is needed, and an

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 28
www.emerald-he.eu

instance is created for each possible variant. Currently, we distinguish between these
two possible variants:

o The first variant, Specification, is used for evidence found in resources, which
describe how the system should behave. The main application for this variant is
in human-readable documents which are not automatically processed for
compilation, e.g. policy documents.

o The second variant, Implementation, is used for evidence found in resources,
which describe, how the system actually behaves. This variant is mainly used for
evidence found in machine-processed assets, e.g. source code, configuration
files, or runtime information.

 CertificationTarget ties the evidence to a certain service. This connection enables the
fusion of evidence from multiple sources using a unique identifier for each service,
which will be used as URI for the service instance.

 Tool represents the extractor component that has collected the evidence.
 To keep things simple, only a single feature (TransportEncryption class) is showcased in

this example and the hierarchy has also been simplified to two levels. The base class of
this hierarchy is SecurityFeature. Also, for simplicity reasons, just one data property
version is shown to store the TLS version.

Resource (defined in Core) is the starting point for ontology extensions. In this example, we used
the Document and Application extensions, which are built on top of the Core ontology, and limit
the scope to just one class per extension. As previously described, the classes in the extensions
should model their respective domains. The following two classes are used in the example:

 PolicyDocument represents a human-readable textual document for policies. It is
modelled as a sub-class of Document and includes (has) two shown data properties type
and path.

 SourceCodeFile represents a source code file which is compiled for a given service and
is stored in a repository. It is modelled as a (indirect) sub-class of SoftwareResource and
includes (has) a data properties language.

Gathered evidence provided by tools is modelled by instantiating classes defined in Core and in
extensions. In the example in Figure 13, evidence for the certification target ProductService is
provided by two extraction components:

 AMOE scanned the DevGuide (a PDF document stored at docs/guide.pdf) and found that
TLS version 1.2 is required to be used in development.

 eknows-e3 scanned the ProductServer (written in Java) and found that TLS version 1.2
is used in the implementation.

 Found evidence is represented as the instances TEFoundInDoc and TEFoundInCode,
which have respective connections to the other instances. Please note that
“TransportEncryption” is abbreviated as “TE” in the diagram.

To sum up, the example illustrates the key idea of the Certification Graph to represent security-
related parts of a cloud service, e.g. of the source code, in a graph structure and provide
additional context through the discovery of other related cloud resources, e.g. policy
documents. Bridging different domains allows to combine evidence at a higher level of
knowledge and enables a comparison, for example, of what is described in policy documents
and what is actually implemented in software. An important point for maximising the potential
of the Certification Graph is that evidence from other extraction components must link to the
same service instance. In OWL, two instances are considered as the same if they are identified
by the same URI. This enables knowledge fusion later on for the assessment in WP3.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 28
www.emerald-he.eu

5 Conclusions
In this deliverable, we described the interim version of the CertGraph ontology, which is the
central schema for integrating evidence extracted from multiple cloud service layers (i.e.,
infrastructure, platform, and software), including policy documents, ML models, and runtime
information, into a single graph-based structure (KR2-CERTGRAPH).

Based on the general idea of (harmonized) security metrics, the CertGraph ontology allows
different evidence collection tools to gather and combine different kinds of evidence for the
same metric, enhancing reuse of evidence collected, and providing answers to assess the
metrics. We provided functional and technical descriptions of the ontology, including its sub-
ontologies and extensions to support the holistic approach to evidence collection. These include
security features to assess security metrics, as well as different domain concepts and
relationships for extracting evidence from source code, from policy documents, from ML
models, and from cloud runtime environments. We further discussed refinements and
limitations of the current status of the CertGraph ontology and presented instructions for its
delivery and usage. An example of modelling and combining evidence information for TLS
encryption (specified in the BSI C5:20201 (CRY-02)) was refined and presented to illustrate the
purpose and innovation of the ontology.

Next steps will include further formalization of concepts like the Document and ML extensions.
We are also looking for collaborations with other domains that can be included in the ontology
as well. Furthermore, the fusion of knowledge must be modelled and implemented in software,
whereby it must be evaluated in advance, which formalism is supported by libraries and
databases. Accordingly, the uniform schema of evidence information will be further refined and
analysed. The final version of the CertGraph ontology will then be reported in D2.11 [2] due in
month 27.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 28
www.emerald-he.eu

6 References

[1] EMERALD Consortium, “D2.1 Graph Ontology for Evidence Storage,” 2024.

[2] EMERALD Consortium, “D2.11 Certification Graph– v2,” 2026.

[3] EMERALD Consortium, “D2.2 Source Evidence Extractor – v1,” 2024.

[4] EMERALD Consortium, “D2.4 AMOE – v1,” 2024.

[5] EMERALD Consortium, “D2.6 ML model certification – v1,” 2024.

[6] EMERALD Consortium, “D2.8 Runtime evidence extractor – v1,” 2024.

[7] C. Banse, I. Kunz, A. Schneider and K. Weiss, “Cloud property graph: Connecting cloud
security assessments with static code analysis,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD) (pp. 13-19), 2021.

[8] S. Schöberl, C. Banse, V. Geist, I. Kunz and M. Pinzger, “CertGraph: Towards a
Comprehensive Knowledge Graph for Cloud Security Certifications,” in Proceedings of the
ACM/IEEE 27th International Conference on Model Driven Engineering Languages and
Systems (pp. 76-77), 2024.

[9] L. Orue-Echevarria, J. Alonso and et al., “MEDINA: Improving Cloud Services
trustworthiness through continuous audit-based certification,” in CEUR Workshop
Proceedings, 2021.

[10] C. Banse, I. Kunz, N. Haas and A. Schneider, “A Semantic Evidence-based Approach to
Continuous Cloud Service Certification,” in Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing (pp. 24–33), 2023.

[11] I. Kunz, K. Weiss, A. Schneider and C. Banse, “Privacy property graph: Towards automated
privacy threat modeling via static graph-based analysis,” in Proceedings on Privacy
Enhancing Technologies, 2023.

[12] EMERALD Consortium, “D1.1 Data modelling and interaction mechanisms - v1,” 2024.

[13] EMERALD Consortium, “D3.4 Evidence Assessment and Certification-Implementation -
v2,” 2025.

[14] I. Sarker, “Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions,” SN computer science, vol. 2, no. 6, p. 420, 2021.

[15] Y. Cai and G. Wunder, "On Gradient-like Explanation under a Black-box Setting: When
Black-box Explanations Become as Good as White-box. arXiv preprint arXiv:2308.09381,"
2023.

[16] J. H. Eloff, R. Holbein and S. Teufel, “Security classification for documents,” Computers &
Security, vol. 15, no. 1, pp. 55-71, 1996.

D2.10 – Certification Graph – v1 Version 1.0 – Final. Date: 31.01.2025

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 28
www.emerald-he.eu

[17] S. W. Lee, R. Gandhi, D. Muthurajan, D. Yavagal and G. J. Ahn, “Building problem domain
ontology from security requirements in regulatory documents,” in Proceedings of the 2006
international workshop on Software engineering for secure systems, pp. 43-50, 2006.

[18] U. Garain and B. Halder, “Machine authentication of security documents,” in Proceedings
of the 2009 10th International Conference on Document Analysis and Recognition, pp. 718-
722, 2009.

[19] G. Liu and H. Zhang, “An ontology constructing technology oriented on massive social
security policy documents,” Cognitive Systems Research, vol. 60, pp. 97-105, 2020.

