

Deliverable D2.1

Graph Ontology for Evidence Storage

Editor(s): Verena Geist, Stefan Schöberl

Responsible Partner: Software Competence Center Hagenberg GmbH

Status-Version: Final – v1.0

Date: 31.07.2024

Type: Report

Distribution level (SEN, PU): PU

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 2 of 33

www.emerald-he.eu

Project Number: 101120688

Project Title: EMERALD

Title of Deliverable: D2.1 Graph Ontology for Evidence Storage

Due Date of Delivery to the EC 31.07.2024

Workpackage responsible for the
Deliverable:

WP2 - Methodology for Knowledge Extraction

Editor(s): Verena Geist, Stefan Schöberl (SCCH)

Contributor(s):
Christian Banse, Immanuel Kunz, Angelika Schneider,
Florian Wendland (FHG)
Franz Deimling (FABA)

Reviewer(s):
Nico Haas (FHG)
Cristina Martínez, Juncal Alonso (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3

Abstract: EMERALD aims to integrate evidence collected at
different levels of the cloud service into a single graph-
based structure, the Certification Graph (CertGraph).
This document describes the development of a uniform
schema for storing and linking these heterogenous data.
The report mainly involves T2.1, but also inputs of T2.2,
T2.3, T2.4, T2.5, and T3.1 are considered.

Keyword List: Evidence collection, knowledge graph schema, ontology
extensions, knowledge integration, combined evidence
analysis.

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer Funded by the European Union. Views and opinions
expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union.
The European Union cannot be held responsible for
them.

http://www.emerald-he.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 3 of 33

www.emerald-he.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 30.04.2024 First draft version, key information,
and TOC.

Verena Geist, Stefan
Schöberl (SCCH),
Christian Banse,
Immanuel Kunz (FHG),
Franz Deimling (FABA)

v0.2 21.05.2024 Basics on ontologies and knowledge
graphs, architecture, and
requirements.

Verena Geist, Stefan
Schöberl (SCCH)

v0.3 23.05.2024 Executive summary, introduction, and
architecture.

Verena Geist, Stefan
Schöberl (SCCH)

v0.4 27.05.2024 Reconciliation of TOC and initial
contents by internal reviewer.

Nico Haas (FHG)

v0.5 11.06.2024 Ontology extensions and
collaboration.

Verena Geist, Stefan
Schöberl (SCCH)

v0.6 26.06.2024 Consolidation of input from task
leaders, and illustrative example.

Angelika Schneider,
Florian Wendland
(FHG),
Franz Deimling (FABA),
Verena Geist, Stefan
Schöberl (SCCH)

v0.7 11.07.2024 QA review by internal reviewer in
accordance with the QA process.

Nico Haas (FHG)

v0.8 15.07.2024 Address comments and suggestions
from the QA review.

Stefan Schöberl (SCCH)

v1.0 31.07.2024 Submitted to the European
Commission.

Cristina Martínez
(TECNALIA)

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 4 of 33

www.emerald-he.eu

Table of contents

Terms and abbreviations ... 6

Executive Summary ... 7

1 Introduction ... 8

1.1 About this Deliverable ... 8

1.2 Document Structure .. 8

2 From the MEDINA Ontology to the EMERALD Knowledge Graph....................................... 10

2.1 Differences between an Ontology and a Knowledge Graph 10

2.2 Recap: Cloud Property Graph Ontology ... 11

2.3 Overview of Planned Extensions ... 13

2.4 Embedding the new Ontology in the EMERALD Architecture 13

3 Requirements for Designing the Ontology .. 16

4 Core Ontology and Extensions .. 17

4.1 Core with Security Feature .. 18

4.1.1 Core – A Base Ontology ... 18

4.1.2 Security Feature – Containing Data Properties for Security Metrics 19

4.2 Ontology Extensions .. 19

4.2.1 Application – A Taxonomy for Source Code .. 19

4.2.2 Document – A Taxonomy for Policy Documents ... 20

4.2.3 ML – A Taxonomy for AI/ML Models ... 20

4.2.4 Cloud – A Taxonomy for Cloud Resources including Runtime Information 20

5 Illustrative Example – Modelling and Combining Evidence Information for “TLS Version” 22

5.1 Overview of Used Concepts ... 22

5.2 Adding Instances for Extracted Evidence .. 24

5.3 Challenges and future work ... 24

6 Conclusion ... 25

7 References ... 27

APPENDIX A: Collaborative Ontology Development using Protégé .. 28

A.1 Governance .. 28

A.2 Technical Aspects ... 28

A.2.1 Restructuring and Extending the Ontology ... 28

A.2.2 Used Tools: Protégé and Git .. 28

APPENDIX B: Owl2proto – Converting Ontology Files to Protobuf ... 30

B.1 Motivation ... 30

B.2 Approach .. 30

B.3 Future Work ... 32

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 5 of 33

www.emerald-he.eu

 List of tables

TABLE 1. ONTOLOGY VS. KNOWLEDGE GRAPH .. 10
TABLE 2. ONTOLOGY EXTENSIONS AND THEIR DEDICATED EXTRACTORS ... 18
TABLE 3. SUB-ONTOLOGIES AND THEIR NAMESPACES ... 18

List of figures

FIGURE 1. EXCERPT OF THE CLOUD PROPERTY GRAPH ONTOLOGY SHOWING DIFFERENT RELATIONSHIPS –

BETWEEN ENTITIES IN BLUE AND INHERITANCE IN YELLOW ... 12
FIGURE 2. MAPPING THE CPG TO THE CODE PROPERTY GRAPH ONTOLOGY .. 12
FIGURE 3. EXCERPT OF THE EMERALD COMPONENT DIAGRAM [3] ... 14
FIGURE 4. OVERVIEW OF HOW THE CERTGRAPH ONTOLOGY LOGICALLY INTERACTS WITH (SELECTED) EMERALD

COMPONENTS ... 15
FIGURE 5. MODULAR DESIGN OF THE CERTGRAPH ONTOLOGY WITH THE EXTENSIONS IN GREEN 17
FIGURE 6. CLASSES AND INSTANCES FOR THE TLS EXAMPLE ... 23
FIGURE 7. SCREENSHOT OF PROTÉGÉ .. 29
FIGURE 8. OVERVIEW OF THE ONTOLOGY HIERARCHY OF THE RESOURCE VIRTUALMACHINE 30
FIGURE 9. EXAMPLE FOR THE PROPERTIES OF THE RESOURCE CLOUDRESOURCE .. 31
FIGURE 10. EXAMPLE FOR THE PROPERTIES OF THE RESOURCE VIRTUAL MACHINE 31
FIGURE 11. EXAMPLE FOR THE AUTO-GENERATED PROTOBUF MESSAGE FOR THE VIRTUALMACHINE RESOURCE32
FIGURE 12. EXAMPLE FOR THE AUTO-GENERATED PROTOBUF MESSAGE FOR THE INTERMEDIATE NODE/RESOURCE

COMPUTE ... 32

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 6 of 33

www.emerald-he.eu

Terms and abbreviations

AI Artificial Intelligence

AMOE Assessment and Management of Organizational Evidence

API Application Programming Interfaces

AST Abstract Syntax Tree

BSI Bundesamt für Sicherheit in der Informationstechnik

CertGraph Certification Graph

CPG Cloud Property Graph

CSA or EU CSA EU Cybersecurity Act

CSP Cloud Service Provider

CRY Cryptography and Key Management

DB Database

DoA Description of Action

EC European Commission

GA Grant Agreement to the project

HTTP Hypertext Transfer Protocol

IRI Internationalized Resource Identifier

KPI Key Performance Indicator

KR Key Result

ML Machine Learning

NLP Natural Language Processing

OWL Web Ontology Language

PoC Proof-of-Concept

Protobuf Protocol Buffers

RDF Resource Description Framework

RDFS RDF Schema

SW Software

SWRL Semantic Web Rule Language

TLS Transport Layer Security

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 7 of 33

www.emerald-he.eu

Executive Summary

This deliverable describes the design and development of the CertGraph Ontology, a central
ontology for storing evidence in a graph-based format. It addresses the key result CERTGRAPH
(KR2) of the EMERALD project by outlining a concept for a uniform graph-based model to
consolidate all necessary evidence information extracted from a cloud service and to enable the
retrieval of combined evidence. In this way, it serves as a common structure that is filled by all
evidence extraction tools of WP2.

EMERALD follows a knowledge graph-based approach to provide this unified view of the cloud
service under certification at different layers of the service. The schema for storing and linking
heterogenous evidence information is developed in WP2, and the model is then implemented
in WP3 as a knowledge graph that can be leveraged by assessment tools to measure
certification-relevant security metrics.

This document starts by sketching the prerequisites for the transition from the MEDINA ontology
to the EMERALD knowledge graph. It introduces a list of requirements for developing the
ontology, such as using a formal language and providing a clear conceptualization for the cloud
service certification domain. The main part describes the ontology extensions to support the
holistic approach to evidence collection, including all levels of the cloud service, ranging from
the infrastructure layer (e.g., virtual resources), to the business layer (e.g., policies and
procedures), to the implementation and data layer, (e.g., source code and increasingly used
artificial intelligence (AI) models). Afterwards, it provides an illustrative example of modelling
and combining evidence information for TLS encryption from different sources (e.g., runtime
information, policy documents, and source code) as proof-of-concept (PoC). Finally, the
document concludes with a short summary and discussion of future work.

The graph-based approach described in this deliverable allows to aggregate individual aspects
and fragments of information to a higher-level viewpoint of combined evidence, not previously
detectable by a single tool. At the same time, the approach maintains traceability back to
different information sources and extraction processes. The uniform schema of evidence
information will then be analysed using intelligent algorithms and leveraged to acquire new
insights or knowledge in future WP2 deliverables, namely D2.10 “Certification Graph–v1” (M15)
and D2.11 “Certification Graph–v1” (M27).

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 8 of 33

www.emerald-he.eu

1 Introduction

For automated compliance tools to work, suitable evidence needs to be extracted and linked
from different layers of a cloud service. This includes, on the one hand, (i) the virtual
infrastructure, such as virtual machines, containers, or storage (based on the Cloud Property
Graph ontology from the MEDINA project). In addition, also the following sources should be
taken into account in EMERALD: (ii) the source code of services, often written in different
programming languages, such as Java, Go, or Python); (iii) relevant parts of legal and policy
documents, such as requirement or architecture documents; (iv) applied machine learning (ML)
models with respect to various criteria, such as robustness, fairness, and explainability; and (v)
runtime information, such as configuration or log files. Extraction tools, which will be developed
as part of the future deliverables D2.2 - D2.9, will extract and provide evidence from the
different layers and sources described above.

The CertGraph Ontology with its respective extensions, described in this document, is a central
tool to bridge the different layers and sources of extracted information.

1.1 About this Deliverable

This document aims to describe the ontology for modelling evidence information in the cloud
service certification domain, i.e., the schema of the EMERALD knowledge graph, consisting of
entities, relations, and properties. In addition, a further task is to define guidelines for designing
the ontology extensions and domain-specific schema constraints for the underlying data.
Thereby, defining additional data properties for enriching data with provenance information
(meta data from sources and extraction processes) is essential for providing traceability down
to different sources for certification.

The ontology represents the basis for integrating and instantiating the knowledge graph as a
repository of target values in the Evidence Store (a microservice of Clouditor) in Task 3.1. It is
also the foundation for analysing the semantic information and context of the heterogeneous
evidence information in Task 2.6 to build a higher-level viewpoint of combined evidence, which
facilitates querying of certification evidence and provides the basis for the evaluation and
assessment of metrics in Task 3.4.

1.2 Document Structure

The document is structured as follows.

In Section 2, we discuss how to extend the MEDINA ontology to the EMERALD knowledge graph.
Therefore, we start by presenting the main differences between an ontology and a knowledge
graph, then give a short recap of the Cloud Property Graph ontology, sketch the planned
extensions, and describe how we intend to embed the new ontology in the EMERALD
architecture.

Section 3 provides the requirements for designing the ontology.

Section 4 details the ontology extensions for the different cloud service layers, i.e., for extracted
evidence from source code, from policy documents, from ML models, and from cloud runtime
environments. We further discuss refinements of data properties for combining evidence and
supporting traceability, as well as of security features to assess new security metrics.

In Section 5, a seamless example for modelling and combining extracted evidence information
from different sources is provided.

Section 6 ends up with the conclusions, including a summary of the main contributions, open
challenges, and future work.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 9 of 33

www.emerald-he.eu

The deliverable also includes two appendices:

• APPENDIX A: Collaborative Ontology Development using Protégé, which includes
remarks for collaborative development of ontology extensions using the Protégé tool.

• APPENDIX B: Owl2proto – Converting Ontology Files to Protobuf, which presents
Owl2proto, a new tool to convert ontology files to Protocol Buffers (Protobuf)
structures.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 10 of 33

www.emerald-he.eu

2 From the MEDINA Ontology to the EMERALD Knowledge Graph

This section explains how to extend the ontology developed in the MEDINA1 project (for
structuring and defining rules and categories of knowledge in the cloud certification domain) to
a knowledge graph (for creating a network of that knowledge, detailing how specific facts
extracted from cloud services are interrelated).

We start by elaborating the key differences of the semantic technologies, then give a short recap
of the Cloud Property Graph Ontology from MEDINA, and shortly present the planned extensions
in EMERALD. Finally, we discuss how the new ontology can be embedded in the EMERALD
architecture.

2.1 Differences between an Ontology and a Knowledge Graph

Ontologies and knowledge graphs are both common components in the field of semantic
technologies, knowledge management, and artificial intelligence, but they serve different
purposes and are structured differently.

Table 1 highlights the main differences between an ontology and a knowledge graph regarding
their definition, main purpose, structure, and use cases.

Table 1. Ontology vs. knowledge graph

 Ontology Knowledge Graph

Definition Formal representation of a set
of concepts and their
relationships within a domain.

Graphical representation of real-world
entities and their interrelations,
typically stored in a graph database.

Main Purpose Enable knowledge sharing and
reuse through structured
domain knowledge; reasoning
about the entities within the
domain.

Integrating information from diverse
data sources and querying of facts;
effective handling of complex,
interconnected information.

Structure Highly structured, including
classes (concepts), instances,
attributes (properties), and
relationships.

Schema can be described by
ontologies, but knowledge graphs are
more focused on the instance level.

Use Cases Semantic web, schemas for
knowledge graphs, data
integration, NLP, reasoning.

Search enhancements, business
intelligence, AI tasks like question
answering, semantic search.

We can summarize the key differences as follows:

• Abstraction level: Ontologies define and categorize the types of concepts and
relationships that can exist in a domain (a higher level of abstraction), while knowledge
graphs focus on specific instances of those concepts and relationships.

• Representation: Ontologies are usually created using formal languages that support
complex expressions and logical inferences, like the Web Ontology Language (OWL),
including constraints, class hierarchies, and more. Knowledge graphs are primarily
represented in graph databases, emphasizing the connections and relationships
between entities.

• Purpose and usage: Ontologies provide a framework for knowledge representation and
reasoning, offering a shared vocabulary for a domain. Knowledge graphs, on the other

1 https://medina-project.eu/

http://www.emerald-he.eu/
https://medina-project.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 11 of 33

www.emerald-he.eu

hand, are focused on connecting real-world entities to form a navigable and query-able
graph of facts and to enhance information retrieval.

These differences revealed the benefits of knowledge graphs over ontologies, leading to the
decision to make the transition.

2.2 Recap: Cloud Property Graph Ontology

The Cloud Property Graph [1] ontology from MEDINA proposes a vendor-independent ontology
of cloud resources and related security features. The main purpose of this ontology was to
harmonize evidence gathering and assessment. Security controls defined in different
certifications or catalogues can be assigned to ontological concepts and those ontological types
can be further used in metric definitions. Therefore, the ontology defines a vocabulary for
mapping between the properties that shall be measured and the respective gathering of
adequate evidence.

The ontology consists of three essential taxonomies (i.e., for cloud resources, functionality, and
security features) and defines relationships between them (e.g., offers to describe which cloud
resource generally offers which security feature). The nodes along the whole hierarchy can have
(and inherit) relationships to other taxonomies (see Figure 1).

Cloud Resource taxonomy:

• Classifies cloud resources across all major cloud providers and architectures, like
Microsoft Azure, Amazon Web Services, Google Cloud Platform, and OpenStack.

• Is ordered by cloud service categories according to functional purposes (e.g., Compute,
Networking, etc.).

• Goal: Representing a generic cloud system (superset of several cloud systems).

Security Feature taxonomy:

• Classifies security properties that can be used in a cloud service.

Functionality taxonomy:

• Includes additional utility entities to cloud resources and security features, such as data
flows in hypertext transfer protocol (HTTP), reading from and writing to a database (DB),
etc.

Note: The relationships in the Cloud Property Graph ontology should be refined in EMERALD.
That is, e.g., offers could mean both, must have or can offer, thus it is not clear which properties
are mandatory and which are optional. Furthermore, hasMultiple or offersMultiple include
mapping information for later code generation, which should be avoided.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 12 of 33

www.emerald-he.eu

Figure 1. Excerpt of the Cloud Property Graph Ontology showing different relationships – between
entities in blue and inheritance in yellow

The design of the ontology is based on the Cloud Property Graph (CPG) applications, application
programming interfaces (APIs) of cloud providers, and deployment scripts. Codyze2 uses classes
implemented in Kotlin, and Java is used to map between classes used in Codyze and elements
of the Cloud Property Graph ontology. For example, FunctionDeclaration is such a class and is
mapped to HTTPEndpoint (see Figure 2). A similar approach will be used for mapping Java classes
of the abstract syntax tree (AST) from eknows3 to security controls that are addressed by metrics.

Figure 2. Mapping the CPG to the Code Property Graph Ontology

2 https://www.codyze.io/
3 https://www.scch.at/software-science/projekte/detail/eKnows

http://www.emerald-he.eu/
https://www.codyze.io/
https://www.scch.at/software-science/projekte/detail/eKnows

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 13 of 33

www.emerald-he.eu

2.3 Overview of Planned Extensions

We take up the key idea of the Cloud Property Graph Ontology from MEDINA, which has the
major advantage that metrics (or rules) can be defined for abstract resource types and/or
security features, while extractor tools can agnostically gather evidence for these abstract
concepts as well.

However, this ontology will only be one part of the EMERALD knowledge graph. We will extent
the existing work by adding:

• A Source Code taxonomy to categorize and organize code elements based on their
characteristics, functionalities, and security aspects.

• An Organizational taxonomy to categorize and organize textual information from policy
documents.

• An Artificial Intelligence (AI) taxonomy to categorize and organize information
extracted from ML models based on certain criteria.

• Additional properties to extend evidence gathering of cloud resource configurations and
to enhance evidence with application-specific runtime information, e.g., from log files.

• Additional security feature properties based on new metrics and pilot requirements.

2.4 Embedding the new Ontology in the EMERALD Architecture

This section describes how the CertGraph Ontology interacts with (selected) EMERALD
components on a conceptual level. Figure 3 shows the current status of the EMERALD
component diagram. In EMERALD, a component is any part of the EMERALD ecosystem that has
a specific functionality, i.e., it can be considered as a separate entity with respect to other
components.

Accordingly, the following terms have been defined:

The CertGraph Ontology is a (formal) model but not considered as a component itself
within the overall EMERALD architecture. It defines the structure and data model (i.e.,
the schema) of the knowledge graph using abstract types of the cloud certification
domain.

The Evidence Store implements the model as a component, see deliverable D3.1 [2].
This knowledge graph is based on the schema represented by the CertGraph Ontology
and primarily focuses on instances (i.e., concrete evidence extracted by the WP2
extraction tools). The Evidence Store can either be deployed as a standalone
component.

The CertGraph Ontology and the Evidence Store form the Certification Graph (KR2
CERTGRAPH). It serves as a common graph-based structure that is filled by all evidence
extraction tools of WP2.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 14 of 33

www.emerald-he.eu

Figure 3. Excerpt of the EMERALD component diagram [3]

In MEDINA, some extraction tools implemented their own assessment. This causes more
maintenance effort if requirements change over time. Thus, centralizing assessment is one of
the goals in EMERALD. This is done by delivering exclusively (or as far as possible) raw evidence
to the Evidence Store. All WP2 extraction components (i.e., AMOE, Codyze, eknows, Clouditor-
Discovery, and AI-SEC), which extract knowledge from the various layers of a cloud service (i.e.,
policy documents, source code, cloud interfaces, ML models, etc.), provide (part of) evidence
(e.g., for transport encryption), which is then mapped to the EMERALD evidence format using
the terms described in the CertGraph Ontology (see Figure 4). This evidence information is
stored in the Evidence Store following the defined schema and is used to assess the metrics
defined in the Repository of Controls And Metrics.

Please note that metrics are not part of the ontology (as this was the case in MEDINA).

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 15 of 33

www.emerald-he.eu

Figure 4. Overview of how the CertGraph Ontology logically interacts with (selected) EMERALD
components

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 16 of 33

www.emerald-he.eu

3 Requirements for Designing the Ontology

As ontologies are formal representations of knowledge with a rich set of concepts within a
domain and the relationships between those concepts, they are used to reason about the
objects within that domain and to describe how they are related. The following requirements
are essential to enable sophisticated knowledge management, retrieval, and reasoning
capabilities:

• Formal language. The ontology should be defined using a formal language that allows
for the expression of concepts, relationships, instances, and axioms. Examples of
ontology languages include the Web Ontology Language (OWL)4, Resource Description
Framework (RDF)5, and RDF Schema (RDFS)6.

• Clear conceptualization. The ontology should provide a clear and comprehensive
conceptualization of the domain it represents, including the definition of classes (or
concepts), properties (attributes or relationships), and instances (individual examples of
classes). Concepts should be consistently defined (e.g., Database was divided into
Storage and Service, whereas Backup was not) and relationship should be properly
refined (e.g., offer should be refined into specifies (for policy documents) and
implements (for source code)). Information, which is needed for code generation from
the ontology (e.g., the Cloud Property Graph ontology used the has and hasMultiple
properties to model to-one or to-many relationships and code generators could
generate appropriate code to represent them) should not be included in the ontology.
Instead, the domain should be the focus and the ontology should reflect it in a
meaningful way.

• Hierarchical structure of concepts. The ontology should support the creation of a
hierarchical structure of concepts, allowing for subclass relationships and the
organization of concepts into a taxonomy.

• Reasoning and consistency checking. The ontology should be compatible with inference
engines and allow for the definition of logical rules that enable automated reasoning
about the concepts and their relationships. In addition, tools and methods should be
available for checking the consistency and validity of the ontology, ensuring that there
are no logical contradictions within the defined concepts and relationships.

• Interoperability and extensibility. The ontology should be developed in a way that
ensures interoperability with other ontologies, facilitating data exchange and
integration across different layers of a cloud service. The ontology should be accessible
to both humans and machines, with clear naming conventions and identifiers, allowing
parts of the ontology to be reused in different namespaces and contexts. It should also
be extensible regarding novel security schemas and standards, in case they require
additional evidence, which has to be modelled as an extension.

• Documentation and annotation. Comprehensive documentation and annotation of the
ontology should be available, including descriptions of the purpose, scope, and structure
of the ontology, as well as the meaning of all concepts and relationships.

• Versioning. There should be a clear strategy for handling the releases of the ontology
(e.g., annually, quarterly, or on demand) and how changes and new versions are
announced.

4 https://www.w3.org/OWL/
5 https://www.w3.org/RDF/
6 https://www.w3.org/TR/rdf12-schema/

http://www.emerald-he.eu/
https://www.w3.org/OWL/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf12-schema/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 17 of 33

www.emerald-he.eu

4 Core Ontology and Extensions

In this section, we discuss how to integrate evidence extracted from the multiple cloud service
layers (i.e., infrastructure, platform, and software), including policy documents and runtime
information, into a single graph-based structure (KR2-CERTGRAPH). Furthermore, evidence
information for the security evaluation of AI models (KR5-AIPOC) will be included. Based on the
general idea of (harmonized) security metrics, we allow different evidence collection tools to
gather different layers of evidence for the same metric, enhancing reuse of evidence collected,
and providing answers to assess the metrics.

Therefore, we plan different extensions of the overall ontology (see Figure 5), which together
represent the unified source of types in the cloud service certification domain. Content is
typically represented by a set of triples (subject, predicate, object), where the predicate
describes the relation between the subject and object entity [4]. Knowledge graphs [5] are a
well-established method for managing complex multi-relational relationships based on the
provided schema. This way, fine-grained entities from different heterogenous sources
(structured data, semi-structured data, free text) can be extracted and linked step by step [6].
Of importance are the ideas of the extended DIKW hierarchy (data, information, knowledge, and
wisdom) [7], where each concept is related to the previous concept, forming a chain of
increasing interconnectedness and evaluated human understanding [8].

The growing availability of large amounts of evidence data, which evolves over time and is
continuously extracted for cloud service certification, requires to annotate the graph with
temporal information, such as timestamps [9]. Explicitly capturing temporal dependencies in
addition to structural properties increases the traceability of facts back to extraction tools and
transparency in processes and procedures required to run cloud services.

Figure 5. Modular design of the CertGraph Ontology with the extensions in green

As shown in Figure 5, the CertGraph Ontology consists of multiple sub-ontologies and
extensions, which cover individual aspects. The Core ontology, together with the Security
Feature ontology, builds the foundation of the ontology and contains base classes and
properties. Specifically, Security Feature models different security related concepts. The
extensions are built on top of this foundation and each extension models the evidence gathered
by a different type of extractor (see Table 2). The collected evidence from the extractors is
represented as instances within a separate part that, in turn, is built upon the ontology and
implemented in the Evidence Store.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 18 of 33

www.emerald-he.eu

Table 2. Ontology extensions and their dedicated extractors

Extension Extractor

Cloud Clouditor-Discovery

Application eknows and Codyze

ML AI-SEC

Document AMOE

Each sub-ontology and extension has its own namespaces (see Table 3). This allows for
interoperability and a flexible extension of the ontology beyond the aspects considered within
EMERALD.

Table 3. Sub-ontologies and their namespaces

Sub-ontology Namespace

Core https://ontology.emerald-he.eu/core

Security Feature https://ontology.emerald-he.eu/core/securityfeature

Cloud https://ontology.emerald-he.eu/resources/cloud

Application https://ontology.emerald-he.eu/resources/application

ML https://ontology.emerald-he.eu/resources/ml

Document https://ontology.emerald-he.eu/resources/documents

Evidence from <tool> https://ontology.emerald-he.eu/evidence/<tool>

At the time of writing, each sub-ontology is not modelled in detail. In the following sections we
outline the main concepts which will be included in each sub-ontology. Section 5 shows an
example of the planned content and includes a diagram, which zooms in and just shows the
relevant parts of the example. The planned collaboration for creating the CertGraph Ontology
and its sub-ontologies and extensions is described in APPENDIX A: Collaborative Ontology
Development using Protégé.

A newly developed tool, called Owl2proto7 allows to convert an ontology to Protobuf structures.
With this tool, we are able to automatically generate proto files from the ontology files and use
them directly in different supported programming languages. Previously, we had to create and
update all ontology objects for each programming language manually. The Owl2proto tool is
described in APPENDIX B: Owl2proto – Converting Ontology Files to Protobuf.

4.1 Core with Security Feature

4.1.1 Core – A Base Ontology

Core is an ontology that constitutes the core of the overall CertGraph Ontology, where different
extensions can be imported (depending on the actual certification use case).

• Root node: Resource (an abstract concept being the anchor of all imported extensions)

• Content:
o Contains the (mandatory) Security Feature Ontology.
o Specifies refinements for combining evidence and supporting traceability, such

as required properties for the extraction source (i.e., which extractor performed
the evidence extraction, in which version of the tool, etc.), timestamps, etc.

7 https://github.com/oxisto/owl2proto

http://www.emerald-he.eu/
https://github.com/oxisto/owl2proto

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 19 of 33

www.emerald-he.eu

4.1.2 Security Feature – Containing Data Properties for Security Metrics

Security Feature is an ontology where all extracted evidence information from the different
layers of a cloud service will be linked to specific data properties of security features to assess
security metrics / requirements from the pilots.

• Root node: SecurityFeature

• Content:
o Based on the existing taxonomy from the MEDINA Ontology, additional security

features and properties will be added based on new metrics and pilot
requirements.

o Additional security features and properties for existing extractors of MEDINA
will be added (e.g., regarding AMOE and Codyze).

o The Functionality taxonomy of the MEDINA Ontology, which comprises a
collection of general concepts, will also be included.

4.2 Ontology Extensions

This section describes the key information of the ontology extensions for different cloud service
layers. Note that a mixed approach will be followed when creating the extensions: We will start
“top-down” by modelling the hierarchical structure of concepts and relationships in a rather
generic way – independent of security metrics and requirements. These taxonomies will then
be refined and linked to data properties of security features “bottom-up”, i.e., depending on
what we need, what we want to measure, and what we actually get from the given artifacts in
the pilots. The more concrete the links, the more added value the ontology will provide. The
starting point for concrete metrics will most likely be official security schemes, such as BSI AIC48
or C59.

4.2.1 Application – A Taxonomy for Source Code

Application is a source code taxonomy to categorize and organize code elements based on their
characteristics, functionalities, and security aspects in software systems (with regard to
evidence extracted in Task 2.2).

• Root node: Application

• Extractor(s)10: Codyze / eknows

• Content:
o Sub-concepts of an application are described in more detail, represented as a

superset of several languages, and linked to (additional) security features. It
may include:

▪ Source code file with line information,
▪ security-related APIs,
▪ business rules,
▪ security guidelines,
▪ project configuration and repository (meta)data.

o Framework taxonomy from the MEDINA Ontology.
o Mapping to eknows classes (AST) will be defined, analogous to mapping to

Codyze classes (CPG).

8https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-
Compliance-Criteria-Catalogue_AIC4.html
9 https://www.bsi.bund.de/dok/7685384
10 Please note that the two extractors should complement each other. For example, one security control
can be better covered by Codyze, another by eknows. There are no plans to combine the two tools.

http://www.emerald-he.eu/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-Compliance-Criteria-Catalogue_AIC4.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/AIC4/AI-Cloud-Service-Compliance-Criteria-Catalogue_AIC4.html
https://www.bsi.bund.de/dok/7685384

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 20 of 33

www.emerald-he.eu

o Extracted evidence for security requirements / features may include
cryptography, secure storage, dependency management, transport encryption,
authentication, authorization, logging, input validation and best practices for
(secure) coding.

4.2.2 Document – A Taxonomy for Policy Documents

Document is an organizational taxonomy to categorize and organize textual information from
policy documents (with regard to evidence extracted in Task 2.3).

• Root node: Document

• Extractor: AMOE

• Content:
o Differentiation between different kinds of policy documents as high-level nodes

(e.g., architecture, requirements, etc.) – the better classified, the more precisely
linkable to security features described in policy documents.

o Might also contain information about author, page number, responsible person,
link to the document, etc.

o Extracted evidence for security requirements/features may include encryption
(transport, browser, password, API, etc.), certificate (key length, validity period,
etc.), authentication (login, password, etc.), security incident, malware
protection, data access, and backup.

4.2.3 ML – A Taxonomy for AI/ML Models

ML is a taxonomy to categorize and organize information extracted from AI/ML models based
on certain criteria (with regard to evidence extracted in Task 2.4).

• Root node: ML

• Extractor: AI-SEC

• Content:
o Differentiation between different kinds of ML models (e.g., for images, text,

etc.) and different kinds of tasks (e.g., classification, prediction etc.) as high-level
nodes.

o Different kind of information denoting relevant criteria (e.g., fairness,
robustness, privacy-preserving, etc.) which will be linked to specific security
features.

o Types for extracted evidence for security features are not defined yet (types
may contain strings, vectors, etc.).

4.2.4 Cloud – A Taxonomy for Cloud Resources including Runtime
Information

Cloud is a taxonomy (based on the contents of MEDINA) with additional properties to extend
evidence gathering of cloud resource configurations and to enhance evidence with application-
specific runtime information, e.g., from log files (with regard to evidence extracted in Task 2.5).

• Root node: Cloud Resource

• Extractor: Clouditor-Discovery

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 21 of 33

www.emerald-he.eu

• Content:
o Based on the existing taxonomy from the MEDINA Ontology. The taxonomy is

divided into different resource categories (e.g., Compute, Storage, Networking)
which contain the corresponding cloud resources (e.g., Virtual Machine, Block
Storage, Network Interface). For example, the resource category Compute
contains the underlying Cloud resources Container, Function and Virtual
Machine.

o Additional and refined links to the security features.
o Extracted evidence for security requirements/features may include encryption

/transport, encryption in use, at rest encryption, etc.), logging (enabled,
retention period, etc.), authentication (password, multi factor, token based,
etc.), access restriction (restricted ports, firewall, etc.), backup (transport
encryption, location, retention period, etc.), redundancy.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 22 of 33

www.emerald-he.eu

5 Illustrative Example – Modelling and Combining Evidence
Information for “TLS Version”

This section presents an illustrative example for modelling and combining extracted evidence
information from different sources. At the time of writing this document, the final choice of the
used security schema(s) and security controls/metrics in EMERALD has not yet been made. We,
therefore, start an initial proof-of-concept with a meaningful security property from a software
perspective taken from BSI C5, e.g., encryption of data for transmission (BSI C5: CRY-02).

The key idea is to represent security-related parts of the source code of a cloud service in a graph
structure and provide additional context through the discovery of the cloud resources the
service is running on and related policy documents, e.g., regarding the used TLS version. Bridging
the world of static code analysis and extraction of a cloud service’s runtime information allows
to combine evidence at a higher level of knowledge and also enables a comparison of what is
described in policy documents.

5.1 Overview of Used Concepts

The focus of this example is on illustrating the big picture and interconnectivity between sub-
ontologies (see Figure 6) and not on details within a certain ontology. Furthermore, OWL will be
used as formal language to describe the ontologies. In the diagram, classes are visualized as
rectangles and instances as hexagons. Open-headed arrows with a filled line (⇾) represent
“subclass of” relations, which connect subclasses to their parent class, and open headed arrows

with a dashed line (┉▹) represent “instance of” relations, which connect instances to their class.
Simple arrows (→) represent data and object properties. These arrows are used between classes
to define the schema, as well as between instances in their materialized form.

As described in Section 4, the two ontologies Core and Security Feature form the basis for the
CertGraph Ontology. The Core ontology defines the metamodel for EMERALD evidence and uses
the concepts defined in the Security Feature ontology.

The Security Feature ontology contains a variety of security features and data properties, which
are based on the same-named taxonomy from MEDINA. To keep things simple, only a single
feature (TransportEncryption class) is showcased in this example and the hierarchy has also been
simplified to two levels. The base class of this hierarchy is SecurityFeature. Also, for simplicity
reasons, just one data property version is defined to store the TLS version.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 23 of 33

www.emerald-he.eu

Figure 6. Classes and instances for the TLS example

The Core ontology contains classes, which define the model of evidence and their connections
to other related information fragments. At the time of writing, our proof-of-concept consists of
the following classes:

• Evidence, which is the central class and instances of it represent detected security
evidence. Each evidence has connections to Security Feature, Service, Asset, and Tool.

• Asset, which represents the source of a piece of evidence and should store relevant
metadata for the location, as it best fits the asset. Each Asset has a connection to an
AssetType.

• AssetType, which classifies the role of assets within the system. AssetType is modelled
as an enumeration type in ontology terms. For this, a class is needed, and an instance is
created for each possible variant. Currently, we distinguish between these two possible
variants:

o The first variant, Specification, is used for evidence found in assets, which
describe, how the system should behave. The main application for this variant
is in human-readable documents which are not automatically processed for
compilation, for example, architecture descriptions or policy documents.

o The second variant, Implementation, is used for evidence found in assets, which
describe, how the system actually behaves. This variant is mainly used for
evidence found in machine-processed assets, for example, source code,
configuration files, or runtime information.

• Service, which ties the evidence to a certain service.

• Tool, which represents the extractor component that has collected the evidence.

In particular, the connection to Service should enable the fusion of evidence from multiple
sources. This requires a unique identifier for each service, which will be used as URI for the
service instance.

Extensions are built on top of the Core and Security Feature ontologies. In this example, we used
the Document and Application extensions and limit the scope to just one class per extension. As

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 24 of 33

www.emerald-he.eu

previously described, the classes in the extensions should model their respective domains. The
following two classes are used in the example:

• ArchitectureDocument, which represents a human-readable textual document for
software architecture, and

• SourceCodeFile, which represents a source code file which is compiled for a given
service and is stored in a repository.

5.2 Adding Instances for Extracted Evidence

Gathered evidence from the system are modelled as OWL instances. In the example in Figure 6,
evidence extracted by eknows will be used. The found evidence is represented as the instance
TEFoundInCode in the diagram and has connections to other instances. Please note that
“TransportEncryption” is abbreviated as “TE” in this example for better readability in the
diagram.

TEFoundInCode connects to the following instances:

• Controller.java, an instance of the SourceCodeFile class,

• TLS, an instance of TransportEncryption with the version property set to “1.2”,

• eknows, an instance of Tool, to represent the extraction component,

• Implementation, an instance provided by Core, to indicate, that the evidence has been
found as actual behaviour, and

• ProductService, an instance of Service, to represent the service, to which the evidence
belongs to.

Note: Evidence from other extraction components must link to the same service instance. In
OWL, two instances are considered as the same if they are identified by the same URI. This
enables knowledge fusion later on for the assessment, and therefore one must ensure that the
same URI is used to identify a given service across all extraction components. This challenge was
tackled in MEDINA by creating an ID for each cloud service, and the same strategy will be applied
here.

5.3 Challenges and future work

Based on this example, the ontology will continuously be extended in the course of the project.
Furthermore, some design decisions are not final and are still discussed. This includes, but is not
limited to, connections between classes in general.

Another open discussion is the structure of Evidence and SecurityFeature. Currently they are
modelled as two separate classes and it is being evaluated whether it would be more sensible
and simpler to merge these two classes into one.

At the time of writing, the implications of each decision cannot yet be estimated entirely, and
the structure of the ontology will continue to evolve. The results will be reported in the
upcoming deliverables D2.10 “Certification Graph–v1” (M15) and D2.11 “Certification Graph–
v1” (M27).

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 25 of 33

www.emerald-he.eu

6 Conclusion

The aim of this deliverable is to document how to establish a unified view of the cloud service
under certification by extracting and enriching knowledge on different layers of the service and
providing a suitable schema for storing this evidence. Therefore, we describe a seamless
approach consisting of data acquisition, knowledge extraction, and knowledge fusion to build
the CertGraph Ontology and its sub-ontologies and extensions to consolidate all necessary
information of the service as the basis for implementing the knowledge graph in WP3. An
illustrative example on how to model and combine evidence extracted by different EMERALD
extractors is provided as an initial proof-of-concept (PoC).

The main contributions of the ontology for evidence storage include the provision of:

1 A concept for generic models to map security aspects.
Firstly, generic models (i.e., sub-ontologies and extensions) provide support for
evidence extraction from different sources (e.g., infrastructure, source code, and
documents) of the service and a schema for storing the heterogeneous evidence
information. Following a knowledge graph-based approach, these models allow to
view partial evidence from different perspectives.

2 A clean basis multi-evidence fusion.
Secondly, linking of heterogeneous evidence allows to aggregate individual aspects
and fragments of information to a higher-level of combined evidence, while providing
support for traceability to information sources and extraction processes. This way, the
graph serves as a common structure filled by all evidence extraction tools that can be
leveraged by the assessment tools in WP3 to measure security metrics.

3 Enhanced quality of measurement and possibility of comparison.
Thirdly, assessing (partial) evidence from different sources allows a qualitative
statement about the accuracy of measured results for auditors and, furthermore,
enables the comparison between specification (e.g., in policy documents) and
implementation (e.g., in source code) of security features.

4 Representation of evidence about AI model security.
Lastly, by integrating also evidence extracted by novel methods for the security
assessment of AI models, EMERALD will also be able to certify cloud-based AI systems
and transfer the innovation results to upcoming AI certification schemes.

There are also some open challenges that we will address in future work:

• Security controls and metrics to be addressed are not yet defined.
It is not clear yet what evidence should be included in the ontology extensions in detail.
This heavily depends on the security controls and metrics to be addressed in the pilots,
which are not known by the time of writing. To mitigate this challenge, we use a mixed
approach (“top-down” followed by “bottom-up”) for developing the ontology
extensions and mapping them to required security feature properties later.
In addition, a workshop is planned together with responsible technical persons of the
pilot partners to discuss functional requirements of the technical extraction
components.

• Details on fusion of partial evidence and implementation options need to be clarified.
Further details on ensuring unique identifiers, temporal constraints, and semantic
refinements need to be investigated. In Task 2.6, we will research on creating a graph
abstraction layer to facilitate querying of evidence and apply graph-based analysis to
generate new insights or knowledge . We will further investigate reasoning techniques

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 26 of 33

www.emerald-he.eu

and explore to which extent they can be reused in the knowledge graph
implementation.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 27 of 33

www.emerald-he.eu

7 References

[1] C. Banse, I. Kunz, A. Schneider and K. Weiss, “Cloud Property Graph: Connecting Cloud
Security Assessments with Static Code Analysis,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), Chicago, 2021.

[2] EMERALD Consortium, “D3.1 Evidence assessment and Certification - Concepts - v1,” 2024.

[3] EMERALD Consortium, “D1.1 Data modelling and interaction mechanisms-v1,” 2024.

[4] X. Zhao, A. Li, R. Jiang and Y. Song, “Multi-source knowledge fusion: a survey,” vol. World
Wide Web, no. 23(4), pp. 2567-2592, 2020.

[5] H. Paulheim, “Knowledge graph refinement: A survey of approaches and evaluation
methods,” vol. Semantic web, no. 8(3), pp. 489-508, 2017.

[6] J. Pujara, H. Miao, L. Getoor and W. Cohen, “Knowledge graph identification,” in
International Semantic Web Conference, pp. 542-557, 2013.

[7] M. Frické, “The knowledge pyramid: the DIKW hierarchy,” Knowledge Organization, vol.
46(1), pp. 33-46, 2019.

[8] C. Zins, “Conceptual approaches for defining data, information, and knowledge,” Journal of
the American society for information science and technology, vol. 58(4), pp. 479-493, 2007.

[9] R. Trivedi, H. Dai, Y. Wang and L. Song, “Know-evolve: Deep temporal reasoning for dynamic
knowledge graphs,” in International Conference on Machine Learning, pp. 3462-3471, 2017.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 28 of 33

www.emerald-he.eu

APPENDIX A: Collaborative Ontology Development using Protégé

In this appendix, we describe the future collaboration between the partners FHG and SCCH to
collaboratively develop the CertGraph Ontology and its sub-ontologies and extensions. We,
therefore, outline the governance and technical aspects of the planned collaboration.

A.1 Governance

To ensure an effective collaboration, the following governance aspects have been defined:

• Repository: A new project called “Ontology” is created in the TECNALIA GitLab under
package “Private / Evidence Management / Ontology”11

• License: Apache 2 license is required for all sub-ontologies and extensions.

• Output format: The OWL ontology format would be preferable because then only minor
changes are required to the previous workflow at FHG using OWL export and Owl2proto
tool for Clouditor.

A.2 Technical Aspects

A.2.1 Restructuring and Extending the Ontology

Restructuring the MEDINA Ontology will be done as outlined in Section 4. In doing so, we will
not start with the existing exported format but build the sub-ontologies from scratch together.

For all sub-ontologies and new extensions, customized URIs will be used to avoid interoperability
issues when working with multiple namespaces and combing evidence information.

A.2.2 Used Tools: Protégé and Git

In contrast to the MEDINA project, where WebProtégé12 was used for joint development, we
have now decided to use the Protégé13 and Git14 tools for EMERALD. This decision is based on
the following reasons:

• WebProtégé is not able to support linking of concepts using different namespaces, i.e.,
through different sub-ontologies.

• WebProtégé is not able to apply reasoning, which is very useful for fusion of multiple
evidence parts.

• The Comment feature of WebProtégé can be replaced by pull requests in Git.

Protégé (see Figure 7) is a desktop application developed by Stanford university that enables the
modelling of ontologies using OWL concepts. Furthermore, it supports a variety of data formats,
including RDF/XML, OWL/XML, Turtle and Manchester OWL. Ontologies can also be imported
into other ontologies, which supports the splitting of the CertGraph Ontology into multiple files
for better structuring. Protégé also provides a reasoning component. This component can derive
new information based on rules (which can be declared as characteristics of properties or can
be written in SWRL, for example). Furthermore, the reasoning component can detect
inconsistencies in the ontology. Beyond this, Protégé offers extensibility via a plugin mechanism.

11 https://git.code.tecnalia.com/emerald/private/evidence-management/ontology [internal use only -
authentication required]
12 https://webprotege.stanford.edu/
13 https://protege.stanford.edu/
14 https://www.git-scm.com/

http://www.emerald-he.eu/
https://git.code.tecnalia.com/emerald/private/evidence-management/ontology
https://webprotege.stanford.edu/
https://protege.stanford.edu/
https://www.git-scm.com/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 29 of 33

www.emerald-he.eu

The collaboration workflow will look as follows: Editing of the ontology will be done in Protégé
and will be saved as OWL/XML. Changes will be checked into the Git repository. The discussion
and review of these changes will occur via pull requests on GitLab. Finally, the changes will be
merged into the main branch.

Figure 7. Screenshot of Protégé

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 30 of 33

www.emerald-he.eu

APPENDIX B: Owl2proto – Converting Ontology Files to Protobuf

The tool Owl2proto15 converts the modelled ontology to an appropriate protobuf schema, which
can be directly used in different programming languages.

B.1 Motivation

The CertGraph Ontology is developed in Protégé16. Programmers that want to use this ontology
definitions as objects in their programming language have to create these objects manually and
update them after the ontology changes. This process involves a lot of work and is prone to
errors.

Owl2proto minimizes the manual effort by auto-generating the protobuf schema from the
ontology definition. The generated protobuf files can then be used by the different components
and their different specific programming languages.

B.2 Approach

The tool Owl2proto auto-generates the protobuf schema out of the modelled ontology.
Therefore, the ontology must be exported in the OWL format. Currently, this is the only file
format that can be processed.

The output format for the protocol buffers is the .proto file format. The protocol buffer file data
is structured as Messages which contain name-value pairs called fields which need to be unique
per package. Each field contains an assigned field number which must also be unique within a
message.

Since ontologies use inheritance and protobuf does not support this, we must remove the
inheritance from the protobuf messages by flattening the hierarchy. An example can be seen in
the figures below. Figure 8 shows the important classes and hierarchy for the example resource
VirtualMachine. The path to the VirtualMachine is Resource → CloudResource → Compute →
VirtualMachine. All classes can have their own properties. Two examples are shown in Figure 9
for the class CloudResource and in Figure 10 for the class VirtualMachine.

Figure 8. Overview of the ontology hierarchy of the resource VirtualMachine

15 https://github.com/oxisto/owl2proto
16 https://protege.stanford.edu/

http://www.emerald-he.eu/
https://github.com/oxisto/owl2proto
https://protege.stanford.edu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 31 of 33

www.emerald-he.eu

Figure 9. Example for the properties of the resource CloudResource

Figure 10. Example for the properties of the resource Virtual Machine

As already mentioned, protobuf does not support inheritance, and the automatically generated
output must flatten the hierarchy. Figure 11 shows an example. All properties of the path from
Resource to VirtualMachine are added to the VirtualMachine protobuf message without any
hierarchy information.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 32 of 33

www.emerald-he.eu

Figure 11. Example for the auto-generated protobuf message for the VirtualMachine resource

Another specialty is that we use the oneOf keyword in protobuf messages. This is used for all
nodes (classes) that are not leaf-nodes (the lowest classes). This allows to obtain the individual
type information of the intermediate nodes. Figure 12 shows an example of the protobuf
message.

Figure 12. Example for the auto-generated protobuf message for the intermediate node/resource
Compute

B.3 Future Work

We plan to implement the following improvements:

• Field numbers. To keep compatibility with previous protobuf version, field number must
not change. Currently, the tool is not able to deal with that if new properties are added.

• Several files. The tool can currently only read in one owl file to generate the
corresponding protobuf file. Since the CertGraph Ontology consists of several import
files, it would be desirable if the tool could directly process several files as input.

http://www.emerald-he.eu/

D2.1 – Graph Ontology for Evidence Storage Version 1.0 – Final. Date: 31.07.2024

© EMERALD Consortium Contract No. GA 101120688 Page 33 of 33

www.emerald-he.eu

• Load Ontology files. Ontology files are usually available at a specific URL. It would be
desirable if only the URL of the root file had to be specified and this and all other
imported files would be automatically retrieved and used for the file generation.

http://www.emerald-he.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this Deliverable
	1.2 Document Structure

	2 From the MEDINA Ontology to the EMERALD Knowledge Graph
	2.1 Differences between an Ontology and a Knowledge Graph
	2.2 Recap: Cloud Property Graph Ontology
	2.3 Overview of Planned Extensions
	2.4 Embedding the new Ontology in the EMERALD Architecture

	3 Requirements for Designing the Ontology
	4 Core Ontology and Extensions
	4.1 Core with Security Feature
	4.1.1 Core – A Base Ontology
	4.1.2 Security Feature – Containing Data Properties for Security Metrics

	4.2 Ontology Extensions
	4.2.1 Application – A Taxonomy for Source Code
	4.2.2 Document – A Taxonomy for Policy Documents
	4.2.3 ML – A Taxonomy for AI/ML Models
	4.2.4 Cloud – A Taxonomy for Cloud Resources including Runtime Information

	5 Illustrative Example – Modelling and Combining Evidence Information for “TLS Version”
	5.1 Overview of Used Concepts
	5.2 Adding Instances for Extracted Evidence
	5.3 Challenges and future work

	6 Conclusion
	7 References
	APPENDIX A: Collaborative Ontology Development using Protégé
	A.1 Governance
	A.2 Technical Aspects
	A.2.1 Restructuring and Extending the Ontology
	A.2.2 Used Tools: Protégé and Git

	APPENDIX B: Owl2proto – Converting Ontology Files to Protobuf
	B.1 Motivation
	B.2 Approach
	B.3 Future Work

